导航栏

×
范文大全 > 教案

[课件]《圆柱的表面积》教案之一

时间:2022-11-21 长方形的表面积小学数学教案

老师在新授课程时,一般会准备教案课件,按要求,每个教师都应该在准备教案课件。有了完善的教案课件,这样才能让课堂的教学效果达到预期。其他人的优质教案课件是怎么写成的呢?急您所急,小编为朋友们了收集和编辑了“[课件]《圆柱的表面积》教案之一”,仅供参考,希望能为您提供参考!

【教学内容】:

p13-14页例3-例4,完成“做一做”及练习二的部分习题。

【教学目标】:

1.理解圆柱的侧面积和表面积的含义。

2.掌握圆柱侧面积和表面积的计算方法。

3.会正确计算圆柱的侧面积和表面积。

【教学重点】:

理解求表面积、侧面积的计算方法,并能正确进行计算。

【教学难点】:

能灵活运用表面积、侧面积的有关知识解决实际问题。

【教学过程】:

一、以旧引新

1.圆柱体有()个面,分别是()、()、()。

2.圆柱体上底和下底之间的距离,叫做(),有()条。

3.长方形面积=()×()

圆的周长=()c=()

圆的面积=()s=()

二、新课

1.圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习七第5题

(1)学生审题,回答下面的问题:

①这两道题分别已知什么,求什么?

②计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3.理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.教学例4

(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

①帽子的侧面积:3.14×20×28=1758.4(平方厘米)

②帽顶的面积:3.14×(20÷2)2=314(平方厘米)

③需要的面料:1758.4+314=20xx.4≈20xx(平方厘米)

5.小结:

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

三、巩固练习

1.做第14页“做一做”。(求表面积包括哪些部分?)

2.练习七第6题。

【板书】:

圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+底面积×2

例4:①帽子的侧面积:3.14×20×28=1758.4(平方厘米)

②帽顶的面积:3.14×(20÷2)2=314(平方厘米)

③需要的面料:1758.4+314=20xx.4≈20xx(平方厘米)

答:需要用20xx平方厘米的面料。

jk251.cOm扩展阅读

《圆柱的表面积》教案怎么写


每个老师上课需要准备的东西是教案课件,每位教师都应该他细设计教案课件。认真做好教案课件的工作计划,这样学生才能更快地理解各知识要点。你有没有关于教案课件撰写方面的苦恼呢?下面是小编精心为您整理的“《圆柱的表面积》教案怎么写”,欢迎大家阅读,希望对大家有所帮助。

教学内容:

小学数学第十二册教材P33~P34

教学目标:

1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学媒体:

圆柱形物体、学具、多媒体课件

教学重点:

圆柱侧面积的计算方法推导。

教学过程:

一、猜测面积大小,激发情趣导入

1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

2、这两个圆柱谁的侧面积谁大?为什么?

3、复习:圆柱的侧面积=底面周长×高

刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

二、组织动手实践,探究圆柱表面积

1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

2、你们觉得这两个圆柱谁的表面积大?为什么?

生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

生:计算的方法

师:怎么计算圆柱的表面积呢?

圆柱的表面积=侧面积+两个底面的面积 (板书)

4、那现在你们就算算这两个圆柱的表面积是多少?

生:(不知所措)没有数字怎么算啊?

师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

生1:我想知道圆柱体的底面半径和高。

生2:我想知道圆柱体的底面直径和高。

生3:我想知道圆柱体的底面周长和高。

师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的.话可以小组讨论来共同完成。

5、汇报展示:

情况一:半径:31.4÷3.14÷2=5(cm)

底面积:3.14×5×5=78.5(平方厘米)

侧面积:31.4×18.84=591.576(平方厘米)

表面积:591.576+78.5×2=748.576(平方厘米)

情况二:半径:18.84÷3.14÷2=3(cm)

底面积:3.14×3×3=28.26(平方厘米)

侧面积:31.4×18.84=591.576(平方厘米)

表面积:591.576+28.26×2=648.096(平方厘米)

师:通过我们计算验证了我们刚才的判断是正确的。

接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

生2:这样做挺麻烦的有没有更简单一点的方法呢?

6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

所以圆柱体表面积=长方形面积=底面周长×(高+半径)

用字母表示:S=C×(h+r)

我们用这个方法来验证一下我们的例2看是不是比原来简单?

汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

三、 分组闯关练习

1、多媒体出示题目。

第一关(填空)

沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

第二关

一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

第三关(用你喜欢的方法完成下面各题)

一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

2、汇报结果,给予评价。

我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

四、 质疑(同学们还有什么疑问吗?)

五、反馈小结:

教学反思

1、 自主探究,体验学习乐趣

以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

2、合作交流,加深对知识的理解深度。

给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

圆柱的表面积 优秀教案推荐


六年级下册数学导学案

年级

六年级下册

课题

圆柱的表面积备课教师赵燕

执教

备课

日期

.2

学习目标1、知识与技能:通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法。2、过程与方法:探索和掌握圆柱侧面积和表面积的计算方法,并能解决生活中相应的实际问题。3、情感态度与价值观:进一步培养学生动手操作能力,发展学生的空间观念。

重点难点重点:理解求圆柱侧面积和表面积的计算方法,并能正确计算。难点:能灵活运用圆柱表面积、侧面积的有关知识解决实际问题

主要导学过程教学环节时间分配活动内容导学策略与方法备注一、导入新课

5分

1.指名学生说出圆柱的特征.

2.口头回答下面问题.

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

(3)长方形,正方形的表面积怎样计算?。

布置课前预习

二、探究新知:15分

(一)小组交流汇报预习情况。

(二)共同探究例3.

1.圆柱的侧面积。

(1)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?(学生观察看到这个长方形的面积等于圆柱的侧面积)

(2)圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.理解圆柱表面积的含义。

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+2个底面的面积

3.小组交流,合作学习例题

(1)学生汇报,集体讲解订正。

(2)师板书:①侧面积:3.14×20×28=1758.4(平方厘米)

②底面积:3.14×(20÷2)2=314(平方厘米)

③表面积:1758.4+314=2072.4≈2080(平方厘米)

答:需要用2080平方厘米的面料。

4.课堂小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.小组交流,质疑,解惑,针对存在问题,教师适时点拨

三,当堂检测

15分

1.求下面各圆柱的侧面积。

(1)底面周长是1.6米,高0.7米。

(2)底面半径是3.2米,高5分米。

2.一个圆柱形铁皮水桶(无盖),高12分米,底面直径是高的3/4.做这个水桶大约要多少铁皮?巩固新知,强化知识四.小结与评价3分这节课你有什么收获?五.布置作业2分1、砌一个圆柱形的沼气池,底面直径是3米,深是2米.在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?2、一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?课后及时温故知新。板书设计

圆柱的表面积圆柱的侧面积=底面周长×高s=ch圆柱的表面积=圆柱的侧面积+2个底面的面积教学反思

圆柱体的表面积 教案精选


教学内容课本第13页的例3,练习2的第5~8题。

教学目标1、使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确计算圆柱体侧面积和表面积。

2、使学生在数学学习活动中获得成功的体验,建立自信心。

教学重点表面积的计算。

教学难点侧面积的含义与计算方法。

教学关键利用教具,弄清侧面积与圆的关系。

教具准备圆柱侧面展开教具。

教学方法操作法。

教学过程

旧知铺垫1、口算。

3.14×34100.5670.820

2、长方体表面积。12㎝

(1)长方体的表面积指的是什么?8㎝

(2)怎样计算长方体的表面积?20㎝

探索新知1、揭示并板书课题。

2、教学例3.

(1)你们知道圆柱体的表面积指的是什么吗?

(说一说、摸一摸)

(2)你们想应该怎样计算圆柱体的表面积?

(学生说明、教师演示)

板书结论:圆柱体的表面积=圆柱体的侧面积+2个底面的面积

(3)圆柱体的底面积和侧面积会计算吗?

(学生说明、教师演示)

板书推导过程。

3、尝试练习。

(1)求侧面积。

a、c=2.5dm,h=0.6dm。

b、d=8cm,h=12cm。

(2)求表面积。

a、s底=40c㎡,s侧=25c㎡。

b、r=2dm,h=5dm。

4、课堂小结。

巩固练习完成练习2的第5、6题。

布置作业完成练习2的第7、8题。

板书设计

2025圆柱的表面积课件(必备七篇)


在众多文章中“圆柱的表面积课件”是我们最爱的一篇,非常感谢你阅读并留下宝贵的意见。学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,所以老师写教案可不能随便对待。 教案和课件的完善体现了教育教学科研水平的高低。

圆柱的表面积课件 篇1

【学习目标】

1、理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的侧面积和表面积。

【重点、难点】

教学重点:运用侧面积公式、表面积公式进行计算。

教学难点:侧面积公式的推导过程。

教具准备:圆柱形的盒,圆柱侧面的展开图。

【学习过程】

一:旧知回顾(只列式不计算)

1、一个直径是100毫米的圆,它的周长是。

2、一个半径3厘米的圆,它的周长是面积是。

3、一个长为3米,宽为2米的长方形,它的面积是。

解答上述问题我用到了这些知识:

二:探究新知

借助手中的圆柱模型组内讨论交流,试着解答下列问题:

活动一:

1、如果要计算饮料罐上的商标纸的面积,(接口处不计)就是计算。

2、怎样计算,要找到哪些条件?

3、探索圆柱侧面积的计算方法。

1)圆柱的侧面展开后是。

2)圆柱侧面展开图的长是圆柱的,宽是圆柱的

通过讨论我来总结一下:

圆柱侧面积的计算方法。

4、测量一下自己手中的饮料罐,算出商标纸的面积。

5、求下列圆柱的侧面积(只列式)试试看

1)底面周长是2.5厘米,高是0.4厘米。列式

2)底面半径0.6分米,高1.3分米。列式

3)底面的直径是2米,高是5米。列式

活动二:

如果要制作一个这样的饮料罐,至少需要多少铁皮?就是计算

圆柱的表面积包括

圆柱表面积的计算方法是。

动手测量出所需条件,计算制作一个这样的饮料罐至少需要多少铁皮?

活动三:自学课本5-6

三:知识的运用

四.巩固提高

求圆柱的表面积

五:颗粒归仓

通过这节课的学习,我学到了:

六.课堂检测

(1)、把圆柱的侧面沿高剪开,展开得到一个()形,这个图形的长等于这个圆柱的(),宽等于这个圆柱的()。

(2)、圆柱的侧面积=()()。

圆柱的表面积=()+()。

(3)、一个圆柱底面的半径是5厘米,高是10厘米,它的侧面积是()。

答案:

(1)长方底面周长高

(2)底面周长高侧面积底面积*2

(3)3140

圆柱的表面积课件 篇2

教学内容:教科书第21-22页,练一练1、2题、练习六1-2题。

教学目标:

1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。

2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。

3、能正确运用公式计算圆柱的侧面积和表面积。

教学重点:

1、理解圆柱侧面积和表面积的意义。

2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。

教学难点:能正确计算圆柱的侧面积和表面积。

教学具准备:圆柱形状的罐头,外面有可以展开的商标纸。

预习作业:

1、预习课本第21-22页的例2、例3。

2、掌握圆柱侧面积和体积的计算方法。

3、在作业本上完成第22页练一练第1题、第2题。

教学过程:

一、预习效果检测

1、圆柱的侧面积=

2、什么叫做圆柱的表面积?

3、圆柱的表面积=

4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。

二、合作探究

(一)、教学例1

1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

问:你能想办法算出这张商标纸的面积吗?

⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

⑵交流:你们是怎么算的?

沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?

使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

2、出示例1中的罐头。

⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便?

⑵出示数据:底面直径11厘米高:15厘米

⑶学生算出商标纸的面积。

⑷交流:你是怎么算的?先算什么?再算什么?

如果知道的是底面半径,怎么算呢?

3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

追问:怎么算圆柱的侧面积?

根据学生回答板书:圆柱侧面积=底面周长×高

4、练习:完成“练一练”第1题。

(二)、教学例3

1、出示例3中的圆柱。

⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

⑵让学生算一算后交流。师板书:

长:3.14×2=6.28(厘米)宽:2厘米

⑶圆柱的两个底面的直径和半径分别是多少厘米?

板书:直径2厘米半径1厘米

2、引导画出圆柱的展开图。

⑴这个圆柱有几个面?分别是什么?

⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

⑶在书上方格纸上画出这个圆柱的展开图。

⑷交流:你是怎么画的?

3、认识圆柱的表面积。

⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

⑵算出这个圆柱的表面积。

算后交流,提醒学生分步计算。

4、练习:完成“练一练”第2题。

(三)、全课总结

这节课我们学习了什么?(板书:圆柱的表面积)

三、当堂达标检测

1、完成练习六第1题。

2、完成练习六第2题。

圆柱的表面积课件 篇3

一、教学目标

1.知识与技能目标:在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2.过程与方法目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3.情感态度价值观目标:过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

二、教学重难点

重点:掌握圆柱侧面积和表面积的计算方法。

难点:运用所学的知识解决简单的实际问题。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是圆柱的表面积,下面我将正式开始我的试讲。

上课,同学们好,请坐。

【导入】

导入:同学们看熊大皱着眉头,满头大汗,好像遇到难题了,我们一起来看一看,原来过两天就是熊二的生日,熊大挑选了一个精美的生日礼物送给熊二同学们请看大屏幕,熊大的礼物是什么形状的呀?对,圆柱体的,可是买完礼物他却犯了难,他想给这个礼物包上一层精美的包装纸。他不知道该买多大的包装纸,同学们,你们愿意帮帮他吗?你们真是一群乐于助人的好孩子,那谁来说一说我们该如何帮助他呢?

请你来说。你对这个问题理解的可真透彻,也就是买个能把圆柱外表的表面全部包起来的包装纸就可以了,也就是想知道需要多大的包装纸,就是求?对圆柱的表面积。

那圆柱的表面积我们该如何计算呢?看同学们既疑惑又好奇的表情,这节课就让我们一起走进圆柱的世界,去探究圆柱的表面积计算方法。

【新授】

活动一:

上节课我们一起认识了圆柱,谁能说一说圆柱有哪些特点?请你来说,说的非常全面,请坐圆柱一共有三个面,两个完全相同的底面和一个侧面。谁还有补充,请你来说补充的非常完整。圆柱沿着它的一条高剪开,它的侧面就是一个长方形。同学们可真棒,对学过的知识都掌握的这么扎实,那请同学们带同学去袋中,拿出我们时间准备好的圆柱体纸盒。和同桌之间互相只一直摸一摸圆柱的表面积是指的哪些部分呢?谁想大家子一直请你来说,是的,非常准确,请坐。圆柱的表面积指的是两个底面加一个侧面的面积。

活动二:

在前面的学习中,我们已经知道了圆柱的展开图,同学们再把手中的圆柱体纸盒动手沿着它的一条高剪开,并仔细观察展开前和展开后,他们什么变了,什么没有变。圆柱的侧面把长方形的长与宽与转化前圆柱的以面半径和高有什么关系?你还有哪些发现?带着这些问题先独立思考,再小组合作,老师相信小组的力量是强大的,讨论完成以端正的坐姿来示意老师看哪个小组的发现又多又好,开始

老师看同学们都已经坐端正了。哪位同学愿意向大家分享一下你们小组的讨论成果,老师看叶渡的同学手举的像小树林一样,那就一组三号同学请你来说。观察的非常细致,其转化前和转换和它同一个立体图形转化为平面图形,但是转化前圆柱的表面积就等于转化后的平面图形的面积。其他同学还有别的发现吗?请你来说。非常棒,请坐。过我们知道圆柱的展开图,发现圆柱的表面积就等于圆柱的侧面积加两个底面的面积。

活动三:

那我们一起来看一看,圆柱的侧面积,你会计算吗?谁还有别的发现呢?请你来说,你真是一个善于思考的好孩子,计算圆柱的侧面积,实际上就是求圆柱侧面所展开的图形,长方形的面积。那我们一起来看一看长方形的长与宽与圆柱的底面半径和高有怎样的关系呢?谁来说一说?请你来说,说的非常准确,请多,我们圆柱展开,侧面的长方形的长,其实就是展开前圆柱底面的周长。而展开后长方形的高就是圆柱的高。同学们,你们都发现了吗?

那经过这些等量关系,你又能得到怎样的结论呢?请你来说,多么了不起的发现,同学们掌声送给这位同学,通过这些等量关系,我们就可以求出圆柱侧面积,就等于底面周长乘高,我们知道底面的周长就等于2πr×h。那侧面接我们求出来了两个底面的面积又该如何求呢?谁来所以说请你来说,小脑袋非常灵活,挺多两个底面,我们知道是完全相同的两个圆,先求出一个圆,再乘二就可以了,一个圆的面积算对πr的平方×2,也就是2πr的平方。那经过我们计算出圆柱的侧面积和两个底面的面积,所以圆柱的表面积就等于,2πrh+2πr的平方。

同学们赶紧在和同桌之间互相读一读,记一记。看来我们要计算一个圆柱的表面积,只要知道什么就可以求出来的呢?对呀,只要知道底面半径和高,就可以求出圆柱的表面积。

观察一下黑板上这些内容,以上就是本节课所要学习的圆柱的表面积。

【巩固练习】

接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕。

把一顶圆柱形厨师帽,高30cm,冒顶直径是20cm,做这样一顶帽子至少需要多少平方厘米的材料呢?同学们赶紧来翻一转,需要多少平方米的材料,其实就是求啊。圆柱的表面积,同学们同意吗?看来有的同学还有不同的想法来请你来说。说的非常棒,请坐,因为我们厨师帽只有一个底面,所以只需要求出一个底面和一个侧面就是需要的面料,同学们赶紧来计算一下吧。老师看,同学们都已经完成了,谁来说一说你的计算过程?请你来说说的非常正确,那最后结果是啊,2198平方厘米,像这种实际使用的面料要比计算的结果多一些,所以这类问题我们往往用进一法取近似值。同学们可真棒,这么快就会用圆柱的表面积的知识解决实际问题了,看来同学们对这节课的知识掌握的非常扎实了。

【课堂小结】

不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课学习了圆柱的表面积,就等于侧面积加两个底面积。看来啊本节课上特听讲非常认真,请坐!

【作业布置】

那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识看一看我们家中有圆柱形物品,求出它们的表面积。下节课一起来交流讨论一下。

圆柱的表面积课件 篇4

【教学目的】:

1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。

2、培养学生分析推理,解决实际问题的能力。

3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。

4、在计算机操作中培养学生的信息素养。

【教学重点】:

使学生理解和掌握求圆柱的侧面积和表面积的计算方法。

【教学难点】:

在计算机操作中培养学生的信息素养。

【教具准备】:

计算机辅助教学课件一套。

【教学过程】:

一、创设情境,提出问题。

1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)

2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)

二、自由选择,自学新知。

1、电脑显示: 自学新知a 自学新知b

说明:在学习新的知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。

2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。

(展开侧面)

自学新知a:

(1)

长方形

底面周长

长方形面积=

圆柱的侧面积=

(2)

底面

底面

侧面

圆柱表面

(动画)

圆柱的表面积=

(3)小组讨论:

(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?

(2)求圆柱的底面积必须具备什么条件?

自学新知b:

(1)思考:把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱底面的(),宽等于圆柱的()。

长方形面积= ×

圆柱的侧面积= ×

(2)思考:圆柱的侧面积加上两个底面积就是圆柱的表面积,

所以:圆柱的表面积= +

(3) 小组讨论:

(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?

(2)求圆柱的底面积必须具备什么条件?

三、初步应用,尝试例题。

学生在学习完自学新知后,进入尝试例题:(注:每道例题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)

电脑显示:

例1:一个圆柱,底面的直径是0。5米,高是1。8米,求它的侧面积。(得数保留两位小数)

例2:一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

例3:一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

提示学生在做完例3后,查阅知识点::这里不能用四舍五入法取近似值,在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。

四、灵活选择,星级题库。

1、师说明:大家在做例题时,完成得都挺不错,下面就请大家把今天所学的知识运用到练习当中,这里有三星题库,题目依次由易到难,请每位同学根据自己的能力,自由选择一星、二星或三星。

2、生自由选择,有困难可以与老师、同学间交流。(注:每道练习题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)

题库:

1、 一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积?

2、 一个圆柱,底面直径是2分米,高是45分米,求它的表面积?

题库:

1、 砌一个圆柱形的沼气池,底面直径是3米,深是2米,在池的周围与底面抹上水泥,抹上水泥的部分面积是多少平方米?

2、 一个压路机的前轮是圆柱,轮宽1。5米,直径1。2米,前轮转动一周,压路的面积是多少平方米?

题库:

1、 一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?

2、 一个没有盖的圆柱形铁皮水桶,高是12分米,底面直径是高的3/4,做这个水桶大约用铁皮多少平方分米?(用进一法取近似值,得数保留整十平方分米)

五、课外知识,开阔视野。

1、师:练习完成又快又好的同学,可以点击课外知识,查阅其它的数学知识。

2、学生点击课外知识:链接北京科教信息网

1、师小结本节课所学内容。

2、学生点击布置作业,查看作业内容:

给一个圆柱形罐头盒加外包装,在计算材料时,注意使用“进一法”。

圆柱的表面积课件 篇5

教材分析

《圆柱的表面积》是北师大版小学数学第十二册第一单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元学习的内容主要有:圆柱和圆锥的认识、圆柱的表面积、圆柱和圆锥的体积等。根据教材的编写意图,圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。本课是学生已经认识了圆柱体的特点以后进行的内容。

教学目标

知识目标:使学生理解圆柱体侧面积和表面积的含义。

能力目标:通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

情感目标:体验成功与失败的收获,体会合作的愉悦。

教学重难点:

使学生认识圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

教具准备:圆柱表面展开电脑动画展示

学具准备:矿泉水瓶、剪子、尺子。

教学过程

一、创设情境,引起兴趣。

1、说出圆柱有什么特点。

2、同学们每天都喝矿泉水,注意到圆柱形瓶子上那些富有个性又漂亮的包装纸了吗?现在有10000瓶矿泉水,请你帮助厂家计算出需要用多少平方米的包装纸呢?

(因为学生对矿泉水最熟悉,所以用这个引入很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。而这个安排,是把圆柱体侧面积单独拿出来研究,分散了教学难点。)

二、自主探究,发现问题。

圆柱侧面积

1、展开

师:用自己喜欢的方式,将矿泉水瓶的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)

(展开的形状可能是长方形、平行四边形、正方形等)

2、能用已有的知识计算它的面积吗?

先计算一个瓶子需要的包装纸,自己操作测量,进行动手学习活动,教师进行巡视指导。

3、小组汇报。

重点感受:圆柱体侧面如果沿着高展开是一个长方形。

这个长方形与圆柱体有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

长方形的面积=圆柱的侧面积

即长宽=底面周长高

所以,圆柱的侧面积=底面周长高

S侧==Ch

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2rh

师:如果圆住展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。

4、解决问题:

10000瓶矿泉水,需要用多少平方米的包装纸呢?

圆柱表面积

1、出示主题图:做一个圆柱形纸盒,需要多大面积的纸板?

师:这一事件从数学角度看,是个怎样得数学问题?(求圆柱表面积)

2、圆柱体的表面积怎样求呢?

得出结论:圆柱的表面积=圆柱的侧面积+底面积2

3、动画:圆柱体表面展开过程

4、独立解答,汇报想法。

三、实际应用

1、填空

圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()

2、要求一个圆柱的表面积,一般需要知道哪些条件()

3、教材第六页试一试。

四、回顾全课

本节课你收获了什么,有什么遗憾。

板书设计:

圆柱体的表面积

圆柱的侧面积=底面周长高S侧=ch

长方形面积=长宽

圆柱的表面积=圆柱的侧面积+底面积2

点评1:

《圆柱的表面积》教学设计

教材分析

《圆柱的表面积》是北师大版小学数学第十二册第一单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元学习的内容主要有:圆柱和圆锥的认识、圆柱的表面积、圆柱和圆锥的体积等。根据教材的编写意图,圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。本课是学生已经认识了圆柱体的特点以后进行的内容。

圆柱体表面积的教学是本单元的第二个主题活动,其前知识基础应该是圆柱体的认识和长方体、正方体表面积的认识和计算。

教学目标

知识目标:使学生理解圆柱体侧面积和表面积的含义。

能力目标:通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

情感目标:体验成功与失败的收获,体会合作的愉悦。

关于教学目标教参中已经明确的给出:

1.通过想象、操作等活动,认识圆柱的侧面展开图,加深对圆柱特征的认识,发展空间观念。

2.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

3.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,体会数学与生活的联系。

本节课能达成前两个目标即可

教学重难点:

使学生认识圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

教学重点和教学难点最好分开写。

教具准备:圆柱表面展开电脑动画展示

学具准备:矿泉水瓶、剪子、尺子。

教学过程

一、创设情境,引起兴趣。

1、说出圆柱有什么特点。(出示圆柱体的平面图或圆柱体教具模型)

2、同学们每天都喝矿泉水,注意到圆柱形瓶子上那些富有个性又漂亮的包装纸了吗?现在有10000瓶矿泉水,请你帮助厂家计算出需要用多少平方米的包装纸呢?

10000个有必要吗?只研究1个不是更能突出本节课的教学重点吗?

(因为学生对矿泉水最熟悉,所以用这个引入很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。而这个安排,是把圆柱体侧面积单独拿出来研究,分散了教学难点。)

这个环节设计的很好,好在教师能以实际的问题入手,提出要解决的实际问题,这个问题中蕴含着学生将要认识的数学知识。只是有一个问题:矿泉水瓶本身不是一个圆柱体,我们能不能找到一个更合适的教学媒介呢?

二、自主探究,发现问题。

圆柱侧面积

1、展开

师:用自己喜欢的方式,将矿泉水瓶的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)

(展开的形状可能是长方形、平行四边形、正方形等)

这是本课的一个基础活动,从您的设计中我看到这个活动包括了以下的步骤:1.猜想、2.操作、3.观察对比、4.小组交流。同时我认为本环节还应该完成实际问题数学化的过程,即将矿泉水瓶侧面的包装纸圆柱体侧面。

建议:1.教师出示矿泉水瓶引导学生观察矿泉水瓶上的包装纸,提问:包装纸包装了矿泉水瓶的哪部分?学生观察口述,抚摸矿泉水瓶的侧面。教师再提问:我们要求包装纸的大小实际上就是求什么?(这样设计的意图:通过观察、抚摸使学生感知圆柱体的侧面,第二次提问,启发学生思考,完成将实际问题数学化).

2.教师提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

3.操作活动:(1)用自己喜欢的方式,将矿泉水瓶的包装纸展开,看看得到一个什么图形?

(2)观察这个图形各部分与圆柱体水瓶有什么关系?

独立操作后,与小组里的同学交流

2、能用已有的知识计算它的面积吗?

先计算一个瓶子需要的包装纸,自己操作测量,进行动手学习活动,教师进行巡视指导。

3、小组汇报。

重点感受:圆柱体侧面如果沿着高展开是一个长方形。

这个长方形与圆柱体有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

长方形的面积=圆柱的侧面积

即长宽=底面周长高

所以,圆柱的侧面积=底面周长高

S侧==Ch

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2rh

师:如果圆住展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。

4、解决问题:

10000瓶矿泉水,需要用多少平方米的包装纸呢?

小组交流应提前,只解决1个瓶子的包装纸的面积即可

圆柱表面积

1、出示主题图:做一个圆柱形纸盒,需要多大面积的纸板?

师:这一事件从数学角度看,是个怎样得数学问题?(求圆柱表面积)

应引导学生说一说圆柱体表面展开图是什么样的,教师再出示圆柱体展开图

2、圆柱体的表面积怎样求呢?

得出结论:圆柱的表面积=圆柱的侧面积+底面积2

3、动画:圆柱体表面展开过程

4、独立解答,汇报想法。

三、实际应用

1、填空

圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()

2、要求一个圆柱的表面积,一般需要知道哪些条件()

3、教材第六页试一试。

四、回顾全课

本节课你收获了什么,有什么遗憾。

板书设计:

圆柱体的表面积

圆柱的侧面积=底面周长高S侧=ch

长方形面积=长宽

圆柱的表面积=圆柱的侧面积+底面积2

圆柱的表面积课件 篇6

教学内容:

教材第4~5页例2、例3和练一练及练习一。

教学要求:

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教具学具准备:

教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

教学重点:

掌握圆柱侧面积的计算方法。

教学难点:

能根据实际情况正确地进行计算。

教学过程:

一、铺垫孕伏:

1.复习圆柱的特征。提问:圆柱有什么特征

2.计算下面圆柱的侧面积(口头列式):

(1)底面周长4.2厘米,高2厘米。

(2)底面直径3厘米,高4厘米。

(3)底面半径1厘米,高3.5厘米。

3.提问:圆柱的一个底面面积怎样计算

4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢这节课就学习圆柱的表面积计算,(板书课题)

二、自主研究:

1.认识表面积计算方法。

(1)请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算圆柱的一个底面积怎样算

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算你们会做吗指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么这里求表面积与例2有什么不同,为什么(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。

5.组织练习。

(1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。

圆柱的表面积课件 篇7

教材内容和在本册教材中的地位:

《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。

学情分析:

学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。

教学目标:

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。

师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

师:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?

引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、我能通过对已有知识的迁移,探索新知识。

(一)圆柱表面积的意义。

设疑:1、长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。

(二)根据条件,计算圆柱的底面积。

圆柱的底面是圆形,同学们会求它的面积吗?

1、引导探究圆柱体侧面积的计算方法。

想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

2、计算圆柱体的侧面积。

(四)求圆柱的表面积。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

(一)汇报圆柱表面积的意义。

2、汇报交流研究结果,各小组展示。

3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

(三)以小组为单位自己做例4,做完组长检查。

1、求出下面各圆柱的侧面积.

3、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?

2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?

课后反思:

我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。

在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。

2、精讲多练。

新知的获得时间要短,课后的练习要从易到难。

本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。

数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。

当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。

圆柱表面积练习教学设计


圆柱的表面积练习课

教学内容:练习四的练习。

教学目标:

知识与技能:会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

情感态度与价值观:培养学生良好的空间观念和解决简单的实际问题的能力。

教学重点:运用所学的知识解决简单的实际问题。

教学难点:运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

3、说一说在实际问题中,各题涉及的面积与圆柱的那些面积有关。(课件出示各个问题)

二、实际应用

(一)基本练习

1、练习四第1题

(1)、学生分三大组独立完成第1题的(1)、(2)、(3)小题。

(2)四人小组互相检查,找出出错学生的错因。

2、练习四第2题

(1)、用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

(2)、学生独立完成这道题,集体订正。

3、练习四第4题

(1)、学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

(2)、指名板演,其他学生独立完成于课堂作业本上。

(二)逆向思维

1、练习四第12题

(1)、学生读题理解题意后尝试独立解题。

(2)、集体评讲,让学生理解求圆柱的高是逆向运用圆柱侧面积等于底面周长乘高。

2、做一节长15分米,侧面积是47.1平方分米的圆柱形烟囱。这节圆柱形烟囱的底面半径是多少分米?

学生独立完成于课堂作业本上。

(三)思维延伸

学生思考圆柱形木料横切和纵剖增加的表面积与什么有关,怎样计算?

练习:练习四第13题。

学生独立完成于课堂作业本上。

三、总结本节课内容

四、布置作业

《练习册》第29页的练习

[教案分享] 《圆柱的表面积》教案(篇五)


教师上课前最好是准备一份教案,通过不断的写教案,我们可以提高自己的语言组织能力,要想在教学中不断进取,其秘诀之一就是编写好教案。怎样才能写好教案?小编为大家收集整理了[教案分享] 《圆柱的表面积》教案(篇五),希望能够帮助到您。

【教学内容】

圆柱的表面积(1)(教材第21页例3)。

【教学目标】

1、理解圆柱的表面积的意义。

2、探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

【重点难点】

1、掌握圆柱的侧面积和表面积的计算方法。

2、理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。

【教学准备】

多媒体课件和圆柱体模型。

【复习导入】

1、复习引入。

指名学生说出圆柱的特征。

2、口头回答下面的问题。

(1)一个圆形花池,直径是5m,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长×宽。

【新课讲授】

1、教师出示圆柱形实物,师生共同研究圆柱的侧面积。

师:圆柱的侧面展开是一个什么图形?

生:长方形。

师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。

师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?

教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。

2、教学例3。

(1)圆柱的表面积的含义。

教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?

通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。

(2)计算圆柱的表面积。

①师:圆柱的表面展开后是什么样的?

组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。

②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。

(3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。

答案:628cm2

【课堂作业】

完成教材第23页练习四的第2~6题。

第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。

第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。

第5题,对于有困难或争议大的,可用实物或模型直观演示。

第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。

答案:

第2题:3、14×1、2×2=7、536(m2)

第3题:3、14×1、5×2、5=11、775(m2)

第4题:3、14×3×2+3、14×(3÷2)2=25、905(m2)

第6题:长方体:800cm2正方体:216dm2圆柱:533、8cm2

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

完成练习册中本课时的练习。

第2课时圆柱的表面积(1)

圆柱体侧面积表面积的计算教学反思 教案精选


圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。

接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。

[圆柱的侧面积和表面积]

沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h.这个矩形的面积就是圆柱的侧面积.由此可知,圆柱的侧面积等于底面的周长乘以高,即

s圆柱侧=ch=2πrh(r为圆柱底面的半径)

圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积).即

s圆柱表=s圆柱侧+2s底=2πrh+2πr2

教学时,要把圆柱的侧面积和表面积区别开来.可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式.

学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难.可以多观察实物、模型,增加感性认识.也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积.例如:s=2πrh,是求();s=2πrh+πr2,是求();s=2πrh+2πr2,是求().

《圆柱的侧面积和表面积》教学片段

在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。

我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:

求铅笔涂漆部分的面积是求()的面积;

压路机滚动一周压过多大路面是求()的面积;

求一个水桶用多少材料是求()的面积;

求汽油桶用多少铁皮是求()的面积。

本文网址://m.jk251.com/jiaoan/59272.html

相关文章
最新更新

热门标签