导航栏

×
范文大全 > 初中教案

幂的乘方与积的乘方教案模板

时间:2022-01-20 同底数幂的乘法

一、教学目标

1.进一步理解积的乘方的运算性质,准确掌握积的乘方的运算性质,熟练应用这一性质进行有关计算.

2.通过推导性质进一步训练学生的抽象思维能力,通过完成例2,培养学生综合运用知识的能力.

3.培养实事求是、严谨、认真、务实的学习态度.

4.渗透数学公式的结构美、和谐美.

二、学法引导

1.教学方法:引导发现法、探究法、讲练法.

2.学生学法:本节主要学习幂的乘方性质和积的乘方性质,到现在为止,我们共学习了益的三个运算性质.幂的三个运算性质是整式乘法的基础,也是整式乘法的主要依据,进行幂的运算,关键是熟练掌握幂的三个运算性质,深刻理解每种运算的意义,避免互相混淆,有时逆用幂的三个运算性质,还可简化运算.

三、重点、难点、疑点及解决办法

(-)重点

准确掌握积的乘方的运算性质.

(二)难点

用数学语言概括运算性质.

(三)解决办法

增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分.

四、课时安排

一课时.

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.通过一组绦习,以达到复习同底数幂的乘法、益的乘方这两个性质的目的,让学生互问互答.

2.推导积的乘方的公式,在推导过程中让学生说出每一步的理由,以便于学生对公式的准确理解.

3.通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握.

4.多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质.

七、教学步骤

(-)明确目标

本节课重点学习积的乘方的运算性质及其较灵活地运用.

(二)整体感知

通过对积的乘方运算性质的推导,加深对该性质的理解.掌握该性质的关键仍在于正确判断使用公式的条件.

(三)教学过程

1.创设情境,复习导入

前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:

填空:

(1)(2)

(3)(4)

学生活动:4个学生说出答案,同桌同学给予判断.

【教法说明】通过完成本练习,进一步巩固、理解同底数幂的乘法,幂的乘方,同时也为顺利完成本节例2做个铺垫.

2.探索新知,讲授新课

我们知道表示个相乘,那么

表示什么呢?(注意:中具有广泛性)

学生回答时,教师板书.

这又根据什么呢?(学生回答乘法交换律、结合律)

也就是

请同学们回答、、、的结果怎样?那么(是正整数)如何计算呢?

;____________个

运用了________律和________律

________个________个

学生活动:学生完成填空.

(是正整数)

刚才我们计算的、是什么运算?(答:乘方运算)什么的乘方?(积的乘方)

通过刚才的推导,我们已经得到了积的乘方的运算性质.

请同学们用文字叙述的形式把它概括出来.

学生活动:学生总结,并要求同桌相互交流,互相纠正补充.达成一致后,举手回答,其他学生思考,准备更正或补充.

【教法说明】通过学生自己概括总结,既培养了学生的参与意识,又训练了他们归纳及口头表达能力.

教师根据学生的概括给予肯定或否定,纠正后板书.

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

运算形式运算方法运算结果

提出问题:这个性质对于三个或三个以上因式的积的乘方适用吗?如

学生活动:在运算的基础上给出答案.

【教法说明】通过教师有意识的引导,让学生在现有知识的基础上开动脑筋、积极思考,这是理解性质、推导性质的关键,教师在对学生回答给予肯定后板书.

3.尝试反馈,巩固知识

例1计算:

(1)(2)

(3)(4)

学生活动:每一题目均由学生说出完整的解题过程.

解:(1)原式

(2)原式

(3)原式

(4)原式

【教法说明】对例1的处理,要充分调动学生的参与意识,训练学生运用已有知识去解决新问题的能力,同时,在学生“说”,教师“写”的过程中,教师可随时发现并及时纠正学生解题中出现的问题,如(1)(2)(4)小题中“-”号的处理,并强调解题程序以及幂的乘方性质的运用,同时提出把着做一个数进行运算.

练习一

(1)计算:(回答)

①②③④

(2)计算:

①②

③④

(3)下面的计算对不对?如果不对,应怎样改正?

①②③

学生活动:第(1)题由4个学生口答,同桌或其他学生给予判断.

第(2)题在练习本上完成,同桌或前后桌互阅,教师抽查.

第(3)题由学生回答.

【教法说明】通过第(1)题可检查学生对性质掌握的熟练程度.第(2)题学生互阅主要是让学生相互交流,培养学生的参与意识.若出现问题由同学指出,有时比老师指出效果要好.第(3)题中的错误是学生应用性质时易出现的,所以在学生回答时,教师对每个问题都应予以强调.

4.综合尝试,巩固知识

例2计算:

(1)

(2)

学生活动:学生分成两组,每组各做一题,各派一个学生板演.

【教法说明】

学生已具备综合运用性质的能力,让学生尝试解题,目的是训练学生分析问题的能力.分组练习,不仅能激发学生的兴趣,同时也可培养学生的集体荣誉感.学生对知识的印象会更深刻.

5.反复练习,加深印象

练习二

计算:

(1)

(2)

学生活动:学生在练习本上完成,找两个学生板演.

【教法说明】此时学生已能准确运用幂的三种运算性质进行计算,但在计算过程中还会出现各种问题,所以在学生板演时,师生共同订正,可减少不必要的错误出现.

6.变式训练,培养能力

练习三

填空:

(1)(2)

(3)(4)

(5)

学生活动:四人一组研究,讨论得出结果,然后由小组代表说出答案.

【教法说明】此组题主要是训练学生的逆向思维和发散思维,提高学生的应变能力.

(四)总结、扩展

这节课我们学习了积的乘方的运算性质,请同学们谈一下你对本节课学习的体会.

学生活动:谈这节课的主要内容或注意问题等等.

【教法说明】课堂归纳总结由学生来说,可以使学生上课听讲精神集中,还可以训练学生归纳总结的能力.

八、布置作业

P101A组4,5.

参考答案

4.(1)(2)(3)(4)

(5)(6)

5.解:(1)原式

(2)原式

Jk251.com相关文章推荐

有理数的乘方初中教案精选


有理数的乘方(第1课时)

教学任务分析

教学流程安排

课前准备

教学过程设计

案例点评:

以在国际象棋上放米粒的故事引课,学习之后又解决这个问题,使课程既丰富多彩,又妙趣横生,也产生了前后呼应的效果。

该案例中,教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,真正体现了在活动中学习数学,在活动中“做数学”,利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣。教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识。整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣。

经典初中教案同底数幂的除法


同底数幂的除法(第二课时)

一、教学目标

1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.

2.培养学生抽象的数学思维能力.

3.通过例题和习题,训练学生综合解题的能力和计算能力.

4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.

二、重点·难点

1.重点

理解和应用负整数指数幂的性质.

2.难点

理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数.

三、教学过程

1.创造情境、复习导入

(l)幂的运算性质是什么?请用式子表示.

(2)用科学记数法表示:①69600②-5746

(3)计算:①②③

2.导向深入,揭示规律

由此我们规定

规律一:任何不等于0的数的0次幂都等于1.

同底数幂扫除,若被除式的指数小于除式的指数,

例如:

可仿照同底数幂的除法性质来计算,得

由此我们规定

一般我们规定

规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.

3.尝试反馈.理解新知

例1计算:(1)(2)

(3)(4)

解:(1)原式

(2)原式

(3)原式

(4)原式

例2用小数表示下列各数:(1)(2)

解:(1)

(2)

练习:P1411,2.

例3把100、1、0.1、0.01、0.0001写成10的幂的形式.

由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值.

问:把0.000007写成只有一个整数位的数与10的幂的积的形式.

解:

像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.

例4用科学记数法表示下列各数:

0.008、0.000016、0.0000000125

解:

例5地球的质量约是吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字)

解:

(吨)

答:木星的质量约是吨.

练习:P1421,2.

四总结、扩展

1.负整数指数幂的性质:

2.用科学记数法表示数的规律:

(1)绝对值较大的数,n是非负整数,n=原数的整数部分位数减1.

(2)绝对值较小的数,n为一个负整数,原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)

五、布置作业

P143A组4,5,6;B组1,2,3,4.

参考答案

略.

六、板书设计

投影幕

引入:例2例4

例3例5

例1练习练习

同底数幂的乘法


(一)

一、素质教育目标

1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.

2.能够熟练运用性质进行计算.

3.通过推导运算性质训练学生的抽象思维能力.

4.通过用文字概括运算性质,提高学生数学语言的表达能力.

5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.

二、学法引导

1.教学方法:尝试指导法、探究法.

2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.

三、重点·难点及解决办法

(-)重点

幂的运算性质.

(二)难点

有关字母的广泛含义及“性质”的正确使用.

(三)解决办法

注意对前提条件的判别,合理应用性质解题.

四、课时安排

一课时.

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

1.复习幂的意义,并由此引入.

2.通过一组的练习,努力探究其规律,在探究过程中理解公式的意义.

3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.

七、教学步骤

(-)明确目标

本节课主要学习的性质.

(二)整体感知

让学生在复习幂的意义的基础之上探究的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加.

(三)教学过程

1.创设情境,复习导入

表示的意义是什么?其中、、分别叫做什么?

师生活动:学生回答(叫底数,叫指数,叫做幂),同时,教师板书.

提问:表示什么?可以写成什么形式?______________

答案:;

【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.

2.尝试解题,探索规律

(1)式子的意义是什么?(2)这个积中的两个因式有何特点?

学生回答:(1)与的积(2)底数相同

引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像这样的运算.

请同学们先根据自己的理解,解答下面3个小题.

;.

学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.

【教法说明】

(1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识.

(2)培养学生运用已有知识探索新知识的热情.

(3)体现学生的主体作用.

3.导向深入,揭示规律

计算的过程就是

也就是

那么,当都是正整数时,如何计算呢?

(都是正整数)

(板书)

学生活动:同桌研究讨论,并试着推导得出结论.

师生共同总结:(都是正整数)

教师把结论写在黑板上.

请同学们试着用文字概括这个性质:

同底数幂相乘底数不变、指数相加

运算形式运算方法

提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

学生活动:观察(都是正整数)

【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与.

4.尝试反馈,理解新知

例1计算:

(1)(2)

例2计算:

(1)(2)

学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确.

教师活动:统计做题正确的人数,同时给予肯定或鼓励.

注意问题:例2(2)中第一个的指数是1,这是学生做题时易出问题之处.

【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解.学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心.

5.反馈练习,巩固知识

练习一

(1)计算:(口答)

①②③

④⑤⑥

(2)计算:

①②③

④⑤⑥

学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

练习二

下面的计算对不对?如果不对,应怎样改正?

(1)(2)(3)

(4)(5)(6)

学生活动:此练习以学生抢答方式完成.注意训练学生的表述能力,以提高兴趣.

【教法说明】练习一主要是对性质运用的强化,形成定势.练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力.(1)(2)小题强调同底数幂乘法与整式加减的区别.(3)(4)小题强调性质中的“不变”、“相加”.(5)小题强调“”表示“”的一次幂.

6.变式训练,培养能力

练习三

填空:

(1)(2)

(3)(4)

学生活动:学生思考后回答.

【教法说明】这组题的目的是训练学生的逆向思维能力.

练习四

填空:

(1),则.

(2),则.

(3),则.

学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成.

【教法说明】此组题旨在增强学生应变能力和解题灵活性.

(四)总结、扩展

学生活动:1.同底数幂相乘,底数_____________,指数____________.

2.由学生说出本节体会最深的是哪些?

【教学说明】在1中强调“不变”、“相加”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

八、布置作业

P941,2.

参考答案

略.

同底数幂的除法


教学建议

1.知识结构:

2.教材分析

(1)重点和难点

重点:准确、熟练地运用法则进行计算.性质是幂的运算性质之一,是整式除法的基础,一定要打好这个基础.

难点:根据乘、除互逆的运算关系得出法则.教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.所以乘、除互逆的运算关系得出法则是本节的难点.

(2)教法建议:

1.教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.教师讲课时要多举几个具体的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则.

2.性质归纳出后,不要急于讲例题,要对法则做几点说明、强调,以引起学生的注意.(1)要强调底数是不等于零的,这是因为,若为零,则除数为零,除法就没有意义了.(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数都是正整数,并且,要让学生运用时予以注意.

重点、难点分析

1.法则:同底数幂相除,底数不变,指数相减,即(,、都是正整数,且).

2.指数相等的同底数的幂相除,商等于1,即,其中.

3.同底数幂相除,如果被除式的指数小于除式的指数,则出现负指数幂,规定

(其中,为正整数).

4.底数可表示非零数,或字母或单项式、多项式(均不能为零).

5.科学记数法:任何一个数(其中1,为整数).

(第一课时)

一、教学目标

1.掌握运算性质.

2.运用运算法则,熟练、准确地进行计算.

3.通过总结除法的运算法则,培养学生的抽象概括能力.

4.通过例题和习题,训练学生的综合解题能力和计算能力.

5.渗透数学公式的简洁美、和谐美.

二、重点难点

1.重点

准确、熟练地运用法则进行计算.

2.难点

根据乘、除互逆的运算关系得出法则.

三、教学过程

1.创设情境,复习导入

前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.

(1)叙述同底数幂的乘法性质.

(2)计算:①②③

学生活动:学生回答上述问题.

.(m,n都是正整数)

【教法说明】通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.

2.提出问题,引出新知

思考问题:().(学生回答结果)

这个问题就是让我们去求一个式子,使它与相乘,积为,这个过程能列出一个算式吗?

由一个学生回答,教师板书.

这就是我们这节课要学习的运算.

3.导向深入,揭示规律

我们通过同底数幂相乘的运算法则可知,

那么,根据除法是乘法的逆运算可得

也就是

同样,

∴.

那么,当m,n都是正整数时,如何计算呢?

(板书)

学生活动:同桌研究讨论,并试着推导得出结论.

师生共同总结:

教师把结论写在黑板上.

请同学们试着用文字概括这个性质:

【公式分析与说明】提出问题:在运算过程当中,除数能否为0?

学生回答:不能.(并说明理由)

由此得出:同底数幂相除,底数.教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:

一般地,

这就是说,同底数幂相除,底数不变,指数相减.

4.尝试反馈,理解新知

例1计算:

(1)(2)

例2计算:

(1)(2)

学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.

教师活动:统计做题正确的人数,同时给予肯定或鼓励.

注意问题:例1(2)中底数为(-a),例2(l)中底数为(ab),计算过程中看做整体进行运算,最后进行结果化简.

5.反馈练习,巩固知识

练习一

(1)填空:

①②

③④

(2)计算:

①②

③④

学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

练习二

下面的计算对不对?如果不对,应怎样改正?

(1)(2)

(3)(4)

学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.

四总结、扩展

我们共同总结这节课的学习内容.

学生活动:①同底数幂相除,底数__________,指数________。

②由学生谈本书内容体会.

【教法说明】强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

五、布置作业

P1431.(l)(3)(5),2.(l)(3),3.(l)(3).

参考答案

略.

六、板书设计

7.8

例1解(l)(2)

∴例2解(l)(2)

一般地

同底数幂相除底数不变、指数相减

运算形式运算方法

同底数幂的乘法教学的教学方案


[课题]

义务教育课程标准实验教科书数学(北师大)七年级下册第一章第3节

一、教学目的:

1、在一定的情境中,经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2、了解同底数幂的乘法运算性质,并能把解决一些简单的实际问题。

二、教学过程实录:

(铃响,上课)

教师:在an这个表达式中,a是什么?n是什么?

当an作为运算时,又读作什么?

学生:a是底数,n是指数,an又读作a的n次幂。

教师:(多媒体投影出示习题)用学过的知识做下面的习题,在做题的过程中,认真观察,积极思考,互相研究,看看能发现什么。

计算:

(1)22×23(2)54×53

(3)(-3)2×(-3)2(4)(2/3)2×(2/3)4

(5)(-1/2)3×(-1/2)4(6)103×104

(7)2m×2n(8)(1/7)m×(1/7)n(m,n是正整数)

(学生开始做题,互相研究、讨论,气氛热烈,教师巡视、指点,待学生充分讨论有所发现后,提问有何发现)

学生A:根据乘方的意义,可以得到:

(1)22×23=25

(2)54×53=57

(3)(-3)2×(-3)2=(-3)5……

教师:刚才A同学说出了根据乘方的意义计算上面各题所得结果,计算是否准确?

学生:计算准确。

教师:通过刚才的计算和研究,发现什么规律性的结论了吗?

学生B:不管底数是什么数,只要底数相同,结果就是指数相加。

教师:请你举例说明。

学生B到前边黑板上板书:

22×23=(2×2)×(2×2×2)=2×2×2×2×2=25

底数不变,指数2+3=5

教师:其他几个题是否也有这样的规律呢?特别是后两个?

学生:都有这样的规律。

教师:请以习题(7)为例再加以说明。

学生C到前边黑板上板书:

2m×2n=(2×2×…×2×2×2)×(2×2×…×2)=(2×2×…×2)=2m+n

m个2n个2(m+n)个2

底数2不变,指数m+n。

教师:大家对刚才两个同学发现的规律有无异议?

学生:没有。

教师:那么,下面大家一起来看更一般的形式:am·an(m,n都是正整数),运用刚才得到的规律如何来计算呢?(学生举手,踊跃板演)

学生D到前边黑板上板书:

am×an=(a×a×…×a×a×a)×(a×a×…×a)=(a×a×…×a)=am+n

m个an个a(m+n)个a

教师:既然规律都是相同的,能否将中间过程省略,将计算过程简化呢?

学生:能。

教师:将中间过程省略,就得到am·an=am+n(m,n都是正整数)

在这里m,n都是正整数,底数a是什么数呢?

学生1:a是任何数都可以。

学生2:a必须是有理数。

学生3:a不能是0。

教师:既然大家对底数a是什么样的数意见不统一,下面大家代入一些数实验一下,然后互相交流,讨论一下。(学生纷纷代入数值实验、讨论,课堂气氛热烈)待学生讨论后:

教师:请得到结论的同学发表意见。

学生1:底数可以是任何数,但我们学的数都是有理数,所以a是任意有理数。

学生2:底数a可以是字母。

学生3:底数a可以是代数式。

教师:刚才几个同学说的很好,底数a确实可以是任何数,将来我们学的数不都是有理数,另外底数a还可以代数式。

教师:请大家思考,刚才我们一起研究的这种乘法应该叫什么乘法呢?

学生:同底数幂的乘法。

教师:刚才大家通过计算,互相研究得到的是同底数幂的乘法运算的方法,现在大家思考一下,如何用你的语言来叙述这个运算的方法呢?(学生积极思考,教师板书课题后提问)

学生1:底数不改变,指数加起来。

学生2:把底数照写,指数相加。

学生3:底数不变,指数相加.

教师:(边叙述边板书)刚才几个同学归纳的很好,同底数幂相乘,底数不变,指数相加。

教师:下面运用所学的知识来判断以下的计算是否正确,如果有错误,请改正。(投影出示判断题)

(1)a3·a2=a6(2)b4·b4=2b4

(3)x5+x5=x10(4)y7·y=y8

教师逐个提问学生解答。

教师:接下来,运用同底数幂的乘法来做下面的例题(投影出示例题)

例1:计算(1)(-3)7×(-3)6(2)(1/10)3×(1/10)

(3)-x3·x5(4)b2m·b2m+1

两名同学到前面来板演,其他同学练习,教师巡视指点,待全体同学做完,对照板演改错,强调解题中的注意问题。

教师:现在我们一起来运用本课所学的知识解决一个实际问题。(投影出示课本引例)

光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107秒计算,比邻星与地球的距离大约是多少千米?

一名同学到前面板演,其他同学练习,待学生做完后发现板演同学有错误。

教师:大家一起来看王鑫同学的板演,发现有问题的请发言。

学生李某:最后结果37.983×1012(千米)是错的,不符合科学技术法的要求。

教师:请你给他改正。

学生李某到前面改正3.7983×1013(千米)

教师:科学技术法,如何记数,怎样要求?

学生王某:把一个较大的数写成a×10n,其中1≤a

教师:现在大家一起来想一想:am·an·ap等于什么?(m,n,p是正整数)(全体学生举手,要求发言)

学生高某:am·an·ap=am+n+p

教师:现在我们大家来互相考一考,请每位同学为你的同桌出三道同底数幂乘法的计算题,计算量不要太大,如果同桌出的题你全对,而你出的题同学有错,你就获胜。(同学之间互相出题,气氛热烈,效果较好)

待学生完成后,教师引导学生分析出错的原因,强调注意问题。

教师:好了,现在让我们一起来回顾一下本节课我们研究的内容,有什么收获和体会,大家一起来谈一谈。

学生1:我们学习了同底数幂的乘法,我会做同底数幂乘法的计算题。

学生2:我学会了如何进行同底数幂的乘法,底数不变,指数相加。

学生3:我们能运用同底数幂的乘法来解决实际问题。

学生4:大家一起研究、讨论、交流、学习很快乐。

学生5:同学之间互相考一考,方法很好,等于一下做了6个题,感觉还不多,愿意做,挺有意思。

教师:大家谈的都非常好!

布置作业,下课!

同底数幂的乘法的教学方案


一、教学目标

1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

2.培养学生运用公式熟练进行计算的能力.

3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

4.渗透数学公式的结构美、和谐美.

二、学法引导

1.教学方法:讲授法、练习法.

2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

三、重点·难点及解决办法

(一)重点

同底数幂的运算性质.

(二)难点

同底数幂运算性质的灵活运用.

(三)解决办法

在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

四、课时安排

一课时.

五、教具学具准备

投影仪、胶片.

六、师生互动活动设计

1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

七、教学步骤

(-)明确目标

本节课重点是熟练运用同底数暴的乘法运算公式.

(二)整体感知

要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用:外,还要善于根据题目的结构特征,学会它们的逆向应用:,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

(三)教学过程

1.创设情境、复习导入

(1)叙述同底数幂乘法法则并用字母表示.

(2)指出下列运算的错误,并说出正确结果.

强调:①中的指数不为0,指数相加时不要漏加的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

(3)填空:

①,

②,,

2.探索新知,讲授新课

例1计算:

(1)(2)(3)

解:(1)原式

(2)原式

(3)原式

例2计算:

(1)(2)

(3)(4)

解:(1)原式

(2)原式

(3)原式

(4)

或原式

提问:和相等吗?

3.巩固熟练

(1)P93练习(下)1,2.

(2)计算:

①②

③④

(3)错误辨析:

计算:①(是正整数)

解:

说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

解:原式

说明:与不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

(四)总结、扩展

底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

八、布置作业

P94A组3~5;P95B组1~2.

参考答案

略.

九、板书设计

投影幂

例1例2练习

小结:

线的比较与画法教案模板


教学设计示例

教学目标

1.使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.

2.使学生学会线段的两种比较方法及表示法.

3.通过本课的教学,进一步培养学生的动手能力、观察能力.

教学重点和难点

对线段与数之间的关系的认识,掌握线段比较的正确方法,是本节的重点,也是难点.

教学过程设计

一、复习线段的概念,引出线段的长度的度量和表示

1.学生动手画出(1)直线AB.(2)射线OA.(3)线段CD.

2.提出问题:能否量出直线、射线、线段的长度?(如果有学生将直线、射线也量出了长度,借此复习直线和射线的概念.)

3.提出数与形的问题:线段是一个几何图形,而线段的长度可用一个正数表示.这就是数与形的结合.

4.线段的两种度量方法:(1)直接用刻度尺.(2)圆规和刻度尺结合使用.(教师可让学生自己寻找这两种方法)

5.教师再讲表示法:线段AB=7cm.

二、通过实例,引导学生发现线段大小的比较方法

教师设计以下过程由学生完成.

1.怎样比较两个学生的身高?提出为什么要站在一起,脚底要在一个平面上?

2.怎样比较两座大山的高低?只要量出它们的高度.

由此引导学生发现线段大小比较的两种比较方法:

重叠比较法将两条线段的各一个端点对齐,看另一个端点的位置.教师为学生演示,步骤有三:

(1)将线段AB的端点A与线段CD的端点C重合.

(2)线段AB沿着线段CD的方向落下.

(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记AB=CD.

若端点B落在D上,则得到线段AB小于线段CD,可以记作AB<CD.

若端点B落在D外,则得到线段AB大于线段CD,可以记作AB>CD.

如图1-6.

教师讲授此部分时,应用几个木条表示线段AB和线段CD,这样可以更加直观和形象.也可以用圆规截取线段的方法进行.

数量比较法用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较.可以用推理的写法,培养学生的推理能力.写法如下:

因为量得AB=××cm,CD=××cm,

所以AB=CD(或AB<CD或AB>CD).

总结:现在我们学会了比较线段的大小,还会比较什么?学生可以回答出,可以比较数的大小,进而再问:数的大小如何比较?(数轴)再问:比较线段的大小与比较数的大小有什么联系?

引导学生得到:比较线段的大小就是比较数的大小.

三、应用实例,变式练习:

1.如图1-7,量出以下图形中各条线段的长度,比较它们的大小.并比较一个三角形中任意两边的和与第三边的关系.可以得出什么结论?

2.如图1-8,根据图形填空.

AD=AB+______+______,AC=______+______,CD=AD-______.

3.如图1-9,已知线段AB,量出它的长度并找出它的中点、三等分点、四等分点.

4.如图1-10,根据图形填空,(1)AB=______+______+______.(2)AB-a=______+______.

四、小结

1.教师提问:怎样表示线段的长度?怎样比较线段的大小?通过本节课你对图形与数之间的关系有什么了解?

2.根据学生回答的情况,教师重点总结数与形的结合以及比较线段大小的两种方法.

五、作业

p.18,1.2题.p21,2.3.4题.

板书设计

课堂教学设计说明

1.本课的教学时间为1课时45分钟.

2.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容忽视,在日常的教学中要时时注意.

3.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.

4.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫.

5.为避免本节课的枯燥,可以用提问的形式,出现悬念.如:开始的提问“线段是几何图形,它与数字有什么联系?”“在我们学过的知识和生活中,什么东西可以比较大小?”等.这样就会调动学生的学习的积极性,提高他们的学习兴趣,积极思维,使课堂的气氛更加活跃.

6.如果感觉课堂密度小,还可以增加一些培养动手能力的题.如:

(1)量一量老师的大三角板中的等腰三角形各边的长,然后再量一量自己手中同样的小三角板各边的长,算一算相等的角所对的边长度的比值,是否相等.(为相似三角形的内容做一些铺垫)

(2)量一量课桌四条边的长,再量一量课本四条边的长,算一算长边与长边的比、短边与短边的比.(得到角相等的图形,边不一定成比例)

(3)在同一时间下,两棵高矮不同的大树的影子的长度自己量出,然后比较大小,想一想这两棵树哪一棵高?(对相似三角形的边角关系有一定的感性认识)以上的三个题对学有余力的同学是很好的认识数学世界的实例.使本节课的内容更加生动丰富,课堂气氛更加活跃.

贺卡的设计与制作教案模板


在我们的初中教学中都离不开教案,教案是教师安排教学的依据,做好教案对我们未来发展有着很重要的意义,什么样的初中教案比较高质量?这篇《贺卡的设计与制作教案模板》应该可以帮助到您。

《心与祝愿--贺卡设计与制作》

教学方法:欣赏,讲解演示和制作相结合。

一、教学目的

1、使学生懂得贺卡是具有纪念意义的精美艺术品,并学习贺卡制作的方法。

2、通过贺卡的制作,提高学生装的设计、制作能力,培养尊敬师长,友爱同学的品德增进师生感情。

二、教学重点、难点

重点:用剪贴手法设计和制作贺卡。

难点:1、构图设计

2、恰当选择材料。

三、教具、学具准备

教具:自制各种示范贺卡;示范制作备用的花纹图案资料;8开白纸,废旧彩图纸,浆糊、剪刀、画板、图钉等。

学具:16开白纸对折,废旧彩图纸、浆糊,彩色笔,剪刀等。

四、教学过程

1.组织教学:检查学具,2.引导认真听课。3.课前谈话导入新课:(约2分钟)

同学们,我们前面学习了色彩知识和美术字等课,今天让同学们运用这些已学过的知识,自己动手制作贺卡。(板书课题:贺卡设计与制作)

贺卡是在重大节日、纪念日、生日互相赠送的具在纪念意义的精美艺术品,它能显示爱心,表达美好的祝愿,给我们增添欢乐,友谊和节日气氛,如果我们能够运用自己已掌握的图案基础知识,自己动手制作,那么,不但能够节约,而且会使人更感亲切,更有意义。

(板书:爱心与祝愿)

3、贺卡欣赏:(出示贺卡范图、边欣赏边讲解边板书)

贺卡的内容广泛:包括贺年卡,对话圣诞卡,尊师卡、生日卡等。贺年的形式很多:单页卡折页卡;有平面的、立体有声的;横式的,竖式的;心形的、树叶形的及不规则形的。

制作贺卡的方法有:摄影的,色彩绘声绘的,镂印喷刷的以及剪贴的。剪贺卡包括利用多种材料拼贴和利用废旧彩图纸剪贴制作的等。贺卡的制作要求:构思巧妙,形式新颖,造型优美,工艺精致。下面重点介绍一下利用废旧彩图纸剪贴制作贺卡的方法。

4、剪贴贺卡的制作步骤:(边演示制作步骤边讲解、边板书)(约分钟)

(1)构思、设计

我们要制作一张贺卡,首先应该有一个好的构思,准备制作一个内容,什么形式的贺卡,然后,可按自己的构思画出铅笔设计稿。

在设计时我们应该考虑赠送的对象,因人而异,如老年人喜欢爱欢乐、新颖的格调;儿童则喜爱灿烂绚丽的色彩我们只有掌握了不同对象的心理和爱好来进行设计制作的贺卡就一定会受到珍视和喜爱的。

(2)准备一张较厚的纸,按所需形状剪裁。

(3)选材、配色:废旧的画报和图片本身就有一定的图形和色彩,我们就是要利用它选取我们所需要的部分图形。要注意色彩配置鲜艳、明快。

(4)剪贴;剪取合适的图形,按设计稿依层次贴到纸上合适的位置。

(5)书写或剪贴赠言:如:新年好、老师您好、生日快乐等祝愿的字句。

(6)整理画面:看看什么地方需调整,什么地方空了需添画。

5、学生课堂作业

(1)请位同学到讲台前各拼贴一张贺卡。

(2)其它同学在座位上开始设计制作剪贴形式的贺卡。

(《新年快乐》、《友谊地久天长》、《老师,您好!》播放轻音乐。)

教师巡视辅导,交待注意事项:

构图时要注意疏密、虚实关系;配色要鲜艳、明快图案和文字要眉目清楚剪贴花纹线条要流畅不要把连接处剪断了。

6、课堂小结(约分钟)

(1)与学生一起分析、讲评作业,并对优秀作业进行表扬。

(2)学生互相交换贺卡。

(3)总结课堂教学情况。

五、作业要求

利用废旧图片或画报剪贴制作一张贺卡,要求构思巧妙,形式新颖,工艺精致。

人体的消化与吸收教案模板


教学目标:

1、设计一份合理的营养食谱

2、关注食品安全,尝试识别过期食品。

教学重点:

设计一份合理的营养食谱。

教学过程:

大分子物质分解成小分子之后,仍停留在小肠中,不能被人体所利用,

要想被人体细胞所利用,必须通过消化道壁进入血循环。这一过程叫做营

养物质的吸收。

课题:营养物质的吸收。

〈1〉主要器官:小肠

〈2〉小肠有哪些特点?(分组观察猪小肠,学生通过观察讨论交流)

皱譬

小肠绒毛(是小肠皱譬表面的细小突起)

[投影:讲解]

为了进一步了解小肠壁的结构特点,同学们自己动手制作小肠结构模型。

[投影:出思考题]。

教师:小肠的皱譬和绒毛等使小肠吸收营养物质的表面积

扩大了近600倍。(小肠的吸收面积约一个网球场大小)

这些营养物质被人体吸收的途径是什么样的呢?

[投影]

氨基酸

葡萄糖}-----毛细血管

少部分的甘油、脂肪酸

大部分的甘油、脂肪酸-----毛细淋巴管}

教师:小肠是营养物质的主要吸收场所,除了小肠

外。其他的消化器官也能吸收少量的营养物质

唾液淀粉酶:淀粉----------麦芽糖

胃蛋白酶,肠液:分解蛋白质、糖类和脂肪。肝脏

分泌的胆汁在脂肪的消化过程中也起着重要作用。

小结:略。

作业:实验报告册。

生物与环境的相互影响教案模板


教学目的;1、通过探究实验,说明生物与环境之间的相互关系。

2、了解生物生存的环境条件。

3、尝试设计实验方案,学会使用不同的方法处理相同的数据。

教学重点:1、生物因素和非生物因素

2、活动“探究温度对霉菌生活的影响”

教学方法:观察、探索、思考、练习

板书设计:

第2节生物与环境的相互影响

一、环境对生物的影响

环境的概念

生态因素非生物因素:阳光、空气、水、温度、土壤等

生物因素:同种生物之间:互助;斗争

不同种生物之间;互惠互利;捕食

教学过程:

复习提问:

什么叫生态系统?(答;略)

导入;

那么生物与环境之间是如何相互影响,相互作用的呢?

进行新课

同学们请考虑一个问题:鱼生活在一个什么样的环境中?在什么环境下生长情况良好?在什么情况下生命又会受到危险呢?

(答案五花八门)

请一位同学总结一下:什么是环境?(答:略)

讲述:

所谓环境,就是生物生活的空间。在这个空间里有很多因素影响到了鱼的生活。大家猜测一下?(答:略)

对,有阳光、空气、水、温度、植物、动物、人等。

提问:

根据大家的经验,这些因素又可以分为几大类?(答:略)

很正确。这些因素统称为生态因素。根据它是否有生命,分为生物因素和非生物因素。

首先我们分析一下生物因素,它是指生物彼此之间的相互影响。请同学们看图(p161--6)

进行归纳(略)

讲述:同学们归纳的很好。生物之间彼此的影响分为二类,一是同种之间,一是不同种之间的(举例说明)同种之间有种内互助、种内争斗。不同种动物之间互惠互利,捕食的关系。

下面我们通过探究实验来说明非生物因素对生物的影响。

讲述:

探究性实验一般包括以下几个步骤:

提出问题——作出假设——设计实验——实施实验并记录——分析实验现象——得出结论

请同学们看书p15进行小组组讨论,根据实验步骤,设计出你组的实验方案,课后按照方案,实施实验,下节课进行交流。(学生讨论。。。。。)

教师提示:

1选取的材料应湿润,营养物质丰富。

2实验中只探究一个可变因素的作用,即在其它条件相同的情况下,通过改变这一个因素来观察该因素与被研究现象之间的关系。

3作好记录。

课后记:

通过实例入手,同学比较容易理解环境的的概念及生态因素,并教给初步的探究方法,使同学们切实感受到生物学是一门实验科学。

本文网址://m.jk251.com/jiaoan/6210.html

相关文章
最新更新

热门标签