导航栏

×
范文大全 > 初中教案

经典初中教案数学教案-二次根式的混合运算

时间:2022-01-29 二次根式的混合运算 二次根式教案

教学建议

知识结构

重难点分析

本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

教法建议

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

让学生先进行思考,解答。然后同学说出怎样进行二次根式的混合运算。

强调:运算顺序及运算律和有理数相同。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

对二次根式混合运算新课引入的建议

复习:

1.计算:(1);(2).

解:(1)(2)

==

=;=.

2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

m(a+b+c)=ma+mb+mc

多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

(a+b)(m+n)=am+an+bm+bn,

其中a,b,m,n都是单项式。

完全平方式是

;。

在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算。引入新课。

对二次根式混合运算学法的建议

在进行二次根式的混合运算时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

这里再顺便提一下,如

这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出,等等.

一、教学目标

1.掌握二次根式的混合运算.

2.掌握乘法公式在混合运算的应用.

3.通过二次根式的混合运算,培养学生的运算能力.

4.通过例题由浅入深,层层深入,激发学生求知的欲望

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:二次根式的混合运算.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

1.复习,运算律及乘法分式,引导学生口答,并强调数的运算律在根式运算中的适用,引入例题.jk251.cOM

2.通过例题由浅入深,层层深入,既提高学生学习的兴趣又激发学生求知的欲望;从例题的讲解中帮助寻找解题的方法,规律及注意点.

3.通过大量的练习,以期形成自己所掌握的知识.

七、教学步骤

(-)明确目标

前面学过二次根式的加减法的简单运算,但二次根式未必全是加减混合运算,它同样会出现二次根式的加、减、乘、除方等混合运算那么二次根式的混合运算的法则是什么?又将怎样运用它进行化简计算,这就是本节课所要研究的问题—二次根式的混合运算.

(二)整体感知

二次根式的混合运算中,应注意运算的次序.这是进行二次根式混合运算的前提条件;通过适当地复习乘法分式,分母有理化知识,然后再进行二次根式的混合运算的教学工作,将有助于更好地学习它;同样为了更好地理解二次根式的混合运算还可以将它与数的运算律和运算方法进行对比,以帮助学生更好地理解并准确地掌握好该知识,达到事半功倍的作用.

第一课时

(-)教学过程

【复习】

运算律在二次根式混合运算中仍适用.

各种整式乘法的法则.

乘法公式:.

提问:加法的交换律、结合律各是怎样的?乘法的交换律、结合律、分配津各是什么?

强调数的运算律在根式运算中仍适用后,可引入例题.

【例题】

例1计算:

(1);

(2).

解:略.

注:①加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于学生理解和掌握.②在运算过程中,对于各个根式不一定要先化简,而是先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如,没有对先进行化简的必要,使计算繁琐,而是应先进行乘法运算,通过约分达到化简的目的.

例2计算:

(1);

(2);

(3).

解:略.

注:①由学生观察算式,找出特征:两个数的和与这两个数差的积;两个数的和或差的平方,联想乘法公式,与多项式的乘法相类似,二次根式的和相乘,适用乘法公式时,运用乘法公式.

②复习乘法公式,可选做几个小题.如,等.

例3计算:

(1);

(2).

解:略.

③引入有理化因式的概念

例如,与,与.

注:互为有理化因式是指两个代数式,其乘积不再含有二次根式.

可适当再举例说明,如与,与、与,但与就不是互为有理化因式.

(二)随堂练习

计算:

(1);(2);

(3);(4);

(5);(6);

(7);(8);

(9).

解:(1).

(2)

(3)

(4)

(5)

(6)

(7).

(8)

(9)

(三)总结、扩展

对二次根式的混合运算与整式的混合运算及数的混合运算比较,要注意运算的顺序及运算律在计算过程中的作用.

有理化因式的概念需强调乘积的结果不再含有二次根式.

练习:教材P198中1、2;教材P199中3.

(四)布置作业

教材P204中1、2、3.

(五)板书设计

标题

1.复习内容例3……

2.例题3.有理化因式

例1……4.练习题

例2……

jK251.com其他人还在看

二次根式的混合运算初中教案精选


教学建议

知识结构

重难点分析

本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

教法建议

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

让学生先进行思考,解答。然后同学说出怎样进行。

强调:运算顺序及运算律和有理数相同。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

对二次根式混合运算新课引入的建议

复习:

1.计算:(1);(2).

解:(1)(2)

==

=;=.

2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

m(a+b+c)=ma+mb+mc

多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

(a+b)(m+n)=am+an+bm+bn,

其中a,b,m,n都是单项式。

完全平方式是

;。

在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行。引入新课。

对二次根式混合运算学法的建议

在进行时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

这里再顺便提一下,如

这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出,等等.

一、教学目标

1.掌握.

2.掌握乘法公式在混合运算的应用.

3.通过,培养学生的运算能力.

4.通过例题由浅入深,层层深入,激发学生求知的欲望

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

1.复习,运算律及乘法分式,引导学生口答,并强调数的运算律在根式运算中的适用,引入例题.

2.通过例题由浅入深,层层深入,既提高学生学习的兴趣又激发学生求知的欲望;从例题的讲解中帮助寻找解题的方法,规律及注意点.

3.通过大量的练习,以期形成自己所掌握的知识.

七、教学步骤

(-)明确目标

前面学过二次根式的加减法的简单运算,但二次根式未必全是加减混合运算,它同样会出现二次根式的加、减、乘、除方等混合运算那么的法则是什么?又将怎样运用它进行化简计算,这就是本节课所要研究的问题—.

(二)整体感知

中,应注意运算的次序.这是进行二次根式混合运算的前提条件;通过适当地复习乘法分式,分母有理化知识,然后再进行的教学工作,将有助于更好地学习它;同样为了更好地理解还可以将它与数的运算律和运算方法进行对比,以帮助学生更好地理解并准确地掌握好该知识,达到事半功倍的作用.

第一课时

(-)教学过程

【复习】

运算律在二次根式混合运算中仍适用.

各种整式乘法的法则.

乘法公式:.

提问:加法的交换律、结合律各是怎样的?乘法的交换律、结合律、分配津各是什么?

强调数的运算律在根式运算中仍适用后,可引入例题.

【例题】

例1计算:

(1);

(2).

解:略.

注:①加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于学生理解和掌握.②在运算过程中,对于各个根式不一定要先化简,而是先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如,没有对先进行化简的必要,使计算繁琐,而是应先进行乘法运算,通过约分达到化简的目的.

例2计算:

(1);

(2);

(3).

解:略.

注:①由学生观察算式,找出特征:两个数的和与这两个数差的积;两个数的和或差的平方,联想乘法公式,与多项式的乘法相类似,二次根式的和相乘,适用乘法公式时,运用乘法公式.

②复习乘法公式,可选做几个小题.如,等.

例3计算:

(1);

(2).

解:略.

③引入有理化因式的概念

例如,与,与.

注:互为有理化因式是指两个代数式,其乘积不再含有二次根式.

可适当再举例说明,如与,与、与,但与就不是互为有理化因式.

(二)随堂练习

计算:

(1);(2);

(3);(4);

(5);(6);

(7);(8);

(9).

解:(1).

(2)

(3)

(4)

(5)

(6)

(7).

(8)

(9)

(三)总结、扩展

对与整式的混合运算及数的混合运算比较,要注意运算的顺序及运算律在计算过程中的作用.

有理化因式的概念需强调乘积的结果不再含有二次根式.

练习:教材P198中1、2;教材P199中3.

(四)布置作业

教材P204中1、2、3.

(五)板书设计

标题

1.复习内容例3……

2.例题3.有理化因式

例1……4.练习题

例2……

数学教案-二次根式的混合运算相关教学方案


一、教学目标

1.理解分母有理化与除法的关系.

2.掌握二次根式的分母有理化.

3.通过二次根式的分母有理化,培养学生的运算能力.

4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:分母有理化.

2.教学难点:分母有理化的技巧.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【复习提问】

二次根式混合运算的步骤、运算顺序、互为有理化因式.

例1说出下列算式的运算步骤和顺序:

(1)(先乘除,后加减).

(2)(有括号,先去括号;不宜先进行括号内的运算).

(3)辨别有理化因式:

有理化因式:与,与,与…

不是有理化因式:与,与…

化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

例如,、、等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

引入新课题.

【引入新课】

化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.

例2把下列各式的分母有理化:

(1);(2);(3)

解:略.

注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

(二)随堂练习

1.把下列各式的分母有理化:

(1);(2);

(3);(4).

解:(1).

(2).

另解:.

(3)

另解:.

通过以上例题和练习题,可以看出,有关二次根式的除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:

,现将分母有理化,就可以了.

,学生易发生如下错误,将式子变形为,而正确的做法是.

2.计算:

(1);

(2);

(3).

解:(1)

(2)

(3)

(三)小结

1.强调二次根式混合运算的法则;

2.注意对有理化因式的概括并寻找出它的规律.

(1)如单独一项的有理化因式就是它本身.(2)如出现和、差形式的:的有理化因式为,的有理数化因式为.

(2)练习:教材P202中1、2.

(四)布置作业

教材P205中4、5.

(五)板书设计

标题

1.复习内容3.练习题一

2.例44.练习题二

二次根式的混合运算教案模板


一、教学目标

1.理解分母有理化与除法的关系.

2.掌握二次根式的分母有理化.

3.通过二次根式的分母有理化,培养学生的运算能力.

4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:分母有理化.

2.教学难点:分母有理化的技巧.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【复习提问】

二次根式混合运算的步骤、运算顺序、互为有理化因式.

例1说出下列算式的运算步骤和顺序:

(1)(先乘除,后加减).

(2)(有括号,先去括号;不宜先进行括号内的运算).

(3)辨别有理化因式:

有理化因式:与,与,与…

不是有理化因式:与,与…

化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

例如,、、等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

引入新课题.

【引入新课】

化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.

例2把下列各式的分母有理化:

(1);(2);(3)

解:略.

注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

(二)随堂练习

1.把下列各式的分母有理化:

(1);(2);

(3);(4).

解:(1).

(2).

另解:.

(3)

另解:.

通过以上例题和练习题,可以看出,有关二次根式的除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:

,现将分母有理化,就可以了.

,学生易发生如下错误,将式子变形为,而正确的做法是.

2.计算:

(1);

(2);

(3).

解:(1)

(2)

(3)

(三)小结

1.强调二次根式混合运算的法则;

2.注意对有理化因式的概括并寻找出它的规律.

(1)如单独一项的有理化因式就是它本身.(2)如出现和、差形式的:的有理化因式为,的有理数化因式为.

(2)练习:教材P202中1、2.

(四)布置作业

教材P205中4、5.

(五)板书设计

标题

1.复习内容3.练习题一

2.例44.练习题二

二次根式的混合运算


一、教学目标

1.理解分母有理化与除法的关系.

2.掌握二次根式的分母有理化.

3.通过二次根式的分母有理化,培养学生的运算能力.

4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:分母有理化.

2.教学难点:分母有理化的技巧.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【复习提问】

二次根式混合运算的步骤、运算顺序、互为有理化因式.

例1说出下列算式的运算步骤和顺序:

(1)(先乘除,后加减).

(2)(有括号,先去括号;不宜先进行括号内的运算).

(3)辨别有理化因式:

有理化因式:与,与,与…

不是有理化因式:与,与…

化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

例如,、、等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

引入新课题.

【引入新课】

化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.

例2把下列各式的分母有理化:

(1);(2);(3)

解:略.

注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

(二)随堂练习

1.把下列各式的分母有理化:

(1);(2);

(3);(4).

解:(1).

(2).

另解:.

(3)

另解:.

通过以上例题和练习题,可以看出,有关二次根式的除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:

,现将分母有理化,就可以了.

,学生易发生如下错误,将式子变形为,而正确的做法是.

2.计算:

(1);

(2);

(3).

解:(1)

(2)

(3)

(三)小结

1.强调二次根式混合运算的法则;

2.注意对有理化因式的概括并寻找出它的规律.

(1)如单独一项的有理化因式就是它本身.(2)如出现和、差形式的:的有理化因式为,的有理数化因式为.

(2)练习:教材P202中1、2.

(四)布置作业

教材P205中4、5.

(五)板书设计

标题

1.复习内容3.练习题一

2.例44.练习题二

二次根式的混合运算的教学方案


一、教学目标

1.掌握二次根式的混合运算.

2.掌握混合运算的应用.

3.通过二次根式的混合运算,培养学生的运算能力.

4.通过混合运算知识拓展,培养学生的探索精神

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:二次根式的混合运算.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【例题】

例1化简:

(1);(2).

解:(1)

(2)

说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把先变为,这样则为1,继续运算可避免错误.

例2解下列方程(组):

(1)

(2)

(3)

解:(1)

(2)①×,得

②×,得

③-④,得

把代入①,得

解得.

∴是原方程组的解.

(3)由②,得

①×,得

③-④,得

把代入①,得

∴是原方程组的解.

例3已知,,求的值.

解:.

,,

∴.

例4已知,,求的值.

解:,.

(二)随堂练习

1.教材中P206中8.

2.解不等式:.

解:

∴.

3.已知,,求的值.

解:3.,或.

4.已知,,求:的值.

解4.

5.已知,求的值.

解5..

6.不求方根的值比较与的大小.

解6.∵

(三)总结、扩展

根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.

(四)布置作业

教材中P207B组1、3和补充作业.

补充作业:

1.已知,求的值.

2.已知,,求的值.

(五)板书设计

标题

1.例题……3.例题……

2.练习题4.练习题

八、背景知识与课外阅读

二次根式的混和运算方法和顺序

1.方法(1)应用二次根式乘法、除法和加减法运算法则.

(2)在实数范围内运算律仍适用.

(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.

2.顺序先乘方、后乘除,最后加减,有括号的先算括号内的数.

经典初中教案数学教案-最简二次根式


教学目的

1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点

最简二次根式的定义。

教学难点

一个二次根式化成最简二次根式的方法。

教学过程

一、复习引入

1.把下列各根式化简,并说出化简的根据:

2.引导学生观察考虑:

化简前后的根式,被开方数有什么不同?

化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:

二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

二、讲解新课

1.总结学生回答的内容后,给出最简二次根式定义:

满足下列两个条件的二次根式叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:

下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

3.例题:

例1把下列各式化成最简二次根式:

例2把下列各式化成最简二次根式:

4.总结

把二次根式化成最简二次根式的根据是什么?应用了什么方法?

当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三、巩固练习

1.把下列各式化成最简二次根式:

2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

二次根式的混合运算相关教学方案


教学建议

知识结构

重难点分析

本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

教法建议

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

让学生先进行思考,解答。然后同学说出怎样进行。

强调:运算顺序及运算律和有理数相同。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

对二次根式混合运算新课引入的建议

复习:

1.计算:(1);(2).

解:(1)(2)

==

=;=.

2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

m(a+b+c)=ma+mb+mc

多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

(a+b)(m+n)=am+an+bm+bn,

其中a,b,m,n都是单项式。

完全平方式是

;。

在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行。引入新课。

对二次根式混合运算学法的建议

在进行时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

这里再顺便提一下,如

这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出,等等.

一、教学目标

1.掌握.

2.掌握乘法公式在混合运算的应用.

3.通过,培养学生的运算能力.

4.通过例题由浅入深,层层深入,激发学生求知的欲望

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

1.复习,运算律及乘法分式,引导学生口答,并强调数的运算律在根式运算中的适用,引入例题.

2.通过例题由浅入深,层层深入,既提高学生学习的兴趣又激发学生求知的欲望;从例题的讲解中帮助寻找解题的方法,规律及注意点.

3.通过大量的练习,以期形成自己所掌握的知识.

七、教学步骤

(-)明确目标

前面学过二次根式的加减法的简单运算,但二次根式未必全是加减混合运算,它同样会出现二次根式的加、减、乘、除方等混合运算那么的法则是什么?又将怎样运用它进行化简计算,这就是本节课所要研究的问题—.

(二)整体感知

中,应注意运算的次序.这是进行二次根式混合运算的前提条件;通过适当地复习乘法分式,分母有理化知识,然后再进行的教学工作,将有助于更好地学习它;同样为了更好地理解还可以将它与数的运算律和运算方法进行对比,以帮助学生更好地理解并准确地掌握好该知识,达到事半功倍的作用.

第一课时

(-)教学过程

【复习】

运算律在二次根式混合运算中仍适用.

各种整式乘法的法则.

乘法公式:.

提问:加法的交换律、结合律各是怎样的?乘法的交换律、结合律、分配津各是什么?

强调数的运算律在根式运算中仍适用后,可引入例题.

【例题】

例1计算:

(1);

(2).

解:略.

注:①加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于学生理解和掌握.②在运算过程中,对于各个根式不一定要先化简,而是先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如,没有对先进行化简的必要,使计算繁琐,而是应先进行乘法运算,通过约分达到化简的目的.

例2计算:

(1);

(2);

(3).

解:略.

注:①由学生观察算式,找出特征:两个数的和与这两个数差的积;两个数的和或差的平方,联想乘法公式,与多项式的乘法相类似,二次根式的和相乘,适用乘法公式时,运用乘法公式.

②复习乘法公式,可选做几个小题.如,等.

例3计算:

(1);

(2).

解:略.

③引入有理化因式的概念

例如,与,与.

注:互为有理化因式是指两个代数式,其乘积不再含有二次根式.

可适当再举例说明,如与,与、与,但与就不是互为有理化因式.

(二)随堂练习

计算:

(1);(2);

(3);(4);

(5);(6);

(7);(8);

(9).

解:(1).

(2)

(3)

(4)

(5)

(6)

(7).

(8)

(9)

(三)总结、扩展

对与整式的混合运算及数的混合运算比较,要注意运算的顺序及运算律在计算过程中的作用.

有理化因式的概念需强调乘积的结果不再含有二次根式.

练习:教材P198中1、2;教材P199中3.

(四)布置作业

教材P204中1、2、3.

(五)板书设计

标题

1.复习内容例3……

2.例题3.有理化因式

例1……4.练习题

例2……

数学教案-二次根式


一、教学目标

1.了解二次根式的意义;

2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3.掌握二次根式的性质和,并能灵活应用;

4.通过二次根式的计算培养学生的逻辑思维能力;

5.通过二次根式性质和的介绍渗透对称性、规律性的数学美.

二、教学重点和难点

重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

难点:确定二次根式中字母的取值范围.

三、教学方法

启发式、讲练结合.

四、教学过程

(一)复习提问

1.什么叫平方根、算术平方根?

2.说出下列各式的意义,并计算:

,,,,,,,

通过练习使学生进一步理解平方根、算术平方根的概念.

观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,

,,,表示的是算术平方根.

(二)引入新课

我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:

新课:二次根式

定义:式子叫做二次根式.

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

例1当a为实数时,下列各式中哪些是二次根式?

分析:,,,、、、四个是二次根式.因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是二次根式.

例2x是怎样的实数时,式子在实数范围有意义?

解:略.

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

例3当字母取何值时,下列各式为二次根式:

(1)(2)(3)(4)

分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.

(2)-3x≥0,x≤0,即x≤0时,是二次根式.

(3),且x≠0,∴x>0,当x>0时,是二次根式.

(4),即,故x-2≥0且x-2≠0,∴x>2.当x>2时,是二次根式.

例4下列各式是二次根式,求式子中的字母所满足的条件:

(1);(2);(3);(4)

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

解:(1)由2a+3≥0,得.

(2)由,得3a-1>0,解得.

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式.所以所求字母x的取值范围是全体实数.

(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

(三)小结(引导学生做出本节课学习内容小结)

1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

2.式子中,被开方数(式)必须大于等于零.

(四)练习和作业

练习:

1.判断下列各式是否是二次根式

分析:(2)中,,是二次根式;(5)是二次根式.因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

2.a是怎样的实数时,下列各式在实数范围内有意义?

五、作业

教材p.172习题11.1;a组1;b组1.

六、板书设计

数学教案-二次根式的除法初中教案精选


教学建议

知识结构:

重点难点分析:

是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.

教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.

教法建议:

1.本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.

2.本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.

3.引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.

教学设计示例

一、教学目标

1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

2.会进行简单的二次根式的除法运算;

3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

4.培养学生利用二次根式的除法公式进行化简与计算的能力;

5.通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

6.通过分母有理化的教学,渗透数学的简洁性.

二、教学重点和难点

1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.

2.难点:二次根式的除法与商的算术平方根的关系及应用.

三、教学方法

从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

内容可引导学生自学,进行总结对比.

四、教学手段

利用投影仪.

五、教学过程

(一)引入新课

学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

学生观察下面的例子,并计算:

由学生总结上面两个式的关系得:

类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

(二)新课

商的算术平方根.

一般地,有(a≥0,b>0)

商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

例1化简:

(1);(2);(3);

解∶(1)

(2)

(3)

说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.

例2化简:

(1);(2);

解:(1)

(2)

让学生观察例题中分母的特点,然后提出,的问题怎样解决?

再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决.

学生讨论本节课所学内容,并进行小结.

(三)小结

1.商的算术平方根的性质.(注意公式成立的条件)

2.会利用商的算术平方根的性质进行简单的二次根式的化简.

(四)练习

1.化简:

(1);(2);(3).

2.化简:

(1);(2);(3)

六、作业

教材P.183习题11.3;A组1.

七、板书设计

本文网址://m.jk251.com/jiaoan/7928.html

相关文章
最新更新

热门标签