导航栏

×
范文大全 > 初中教案

数学教案-切线的判定性质教案模板

初中教师上课前最好是准备一份教案,多写教案能够提升我们的策划能力,要想在初中教学中不断提升自己,教案必不可少。如何才能写好初中教案呢?下面是小编为大家整理的“数学教案-切线的判定性质教案模板”相关内容,仅供参考,欢迎大家阅读。

切线的判定和性质(一)

教学目标:

1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

教学重点:切线的判定定理和切线判定的方法;

教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

教学过程设计

(一)复习、发现问题

1.直线与圆的三种位置关系

在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

2、观察、提出问题、分析发现(教师引导)

图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

(二)切线的判定定理:

1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

2、对定理的理解:

引导学生理解:①经过半径外端;②垂直于这条半径.

请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

(三)切线的判定方法

教师组织学生归纳.切线的判定方法有三种:

①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

(四)应用定理,强化训练

例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

求证:直线AB是⊙O的切线.

分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

证明:连结0C

∵0A=0B,CA=CB,”

∴0C是等腰三角形0AB底边AB上的中线.

∴AB⊥OC.

直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

练习1判断下列命题是否正确.

(1)经过半径外端的直线是圆的切线.

(2)垂直于半径的直线是圆的切线.

(3)过直径的外端并且垂直于这条直径的直线是圆的切线.

(4)和圆有一个公共点的直线是圆的切线.

(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

采取学生抢答的形式进行,并要求说明理由,

练习P106,1、2

目的:使学生初步会应用切线的判定定理,对定理加深理解)

(五)小结

1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

2、方法:判定一条直线是圆的切线的三种方法:

(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

(3)根据切线的判定定理来判定.

其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

3、能力:初步会应用切线的判定定理.

(六)作业P115中2、4、5;P117中B组1.

切线的判定和性质(二)

教学目标:

1、使学生理解切线的性质定理及推论;

2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;

教学重点:切线的性质定理和推论1、推论2.

教学难点:利用“反证法”来证明切线的性质定理.

教学设计:

(一)基本性质

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;

猜想:圆的切线垂直于经过切点的半径.

引导学生应用“反证法”证明.分三步:

(1)假设切线AT不垂直于过切点的半径OA,

(2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.

(3)承认所要的结论AT⊥AO.

切线的性质定理:圆的切线垂直于经过切点的半径.

指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.

引导学生发现:

推论1:经过圆心且垂直于切线的直线必经过切点.

推论2:经过切点且垂于切线的直线必经过圆心.

引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:

如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

(1)垂直于切线;

(2)过切点;

(3)过圆心.

(二)归纳切线的性质

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

(三)应用举例,强化训练.

例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

求证:AC平分∠DAB.

引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.

证明:连结OC.

∴AC平分∠DAB.

例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。

已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD

求证:连结E、F的线段是直径。

证明:连结EO并延长

∵AB切⊙O于E,∴OE⊥AB,

∵AB∥CD,∴OE⊥CD.

∵CD是⊙O切线,F为切点,∴OE必过切点F

∴EF为⊙O直径

强化训练:P109,1

3、求证:经过直径两端点的切线互相平行。

已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B

求证:MN∥CD

证明:∵MN切⊙O于A,AB为⊙O直径

∴MN⊥AB

∵CD切⊙O于B,B为半径外端

∴CD⊥AB,

∴MN∥CD.

(四)小结

1、知识:切线的性质:

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

2、能力和方法:

凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.

(五)作业教材P109练习2;教材P116中7.

切线的判定和性质(三)

教学目标:

1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;

2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;

3、通过对切线的综合型例题分析和论证,激发学生的思维.

教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.

教学难点:综合型例题分析和论证的思维过程.

教学设计:

(一)复习与归纳

1、切线的判定

切线的判定方法有三种:

①直线与圆有唯一公共点;

②直线到圆心的距离等于该圆的半径;

③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.

2、切线的性质:

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

(二)灵活应用

例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

证明:连结OD.

∵OA=OD,∴∠1=∠2,

∵AD∥OC,∴∠1=∠3、∠2=∠4

∴∠3=∠4

在△OBC和△ODC中,

OB=OD,∠3=∠4,OC=OC,

∴△OBC≌△ODC,∴∠OBC=∠ODC.

∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.

∴DC是⊙O的切线.

例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

证明:连结OE,过O作OF⊥CD,垂足为F.

∵AB与小圆O切于点点E,∴OE⊥AB.

又∵AB=CD,

∴OF=OE,又OF⊥CD,

∴CD与小圆O相切.

学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);

(2)“连结”过切点的半径,产生垂直的位置关系.

例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点

求证:CE=CF

证明:连结OE

∵BE=BO∴∠3=∠B

∵CE切⊙O于E

∴OE⊥CE∠2+∠3=90°

∵CD⊥AB∴∠4+∠B=90°

∴∠2=∠4

∵∠1=∠4∴∠1=∠2

∴CE=CF

以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.

巩固练习:P111练习1、2.

(三)小结:

1、知识:(指导学生归纳)切线的判定方法和切线的性质

2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.

(四)作业:教材P115,1(1)、2、3.

探究活动

问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.

(1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;

(2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;

猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.

解:(1)测量结果:

(2)图2中的测量结果:

图3中的测量结果:

猜想:

证明:

解:(1)测量结果:∠CDP=45°.

(2)图2中的测量结果:∠CDP=45°.

图3中的测量结果:∠CDP=45°.

猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.

证明:连结OC.

∵PC切⊙O于点C,

∴PC⊥OC,

∴∠1+∠CPO=90°,

∵PC平分∠APC,

∴∠2=1/2∠CPO.

∵OA=OC

∴∠A=∠3.

∴∠1=∠A+∠3,

∴∠A=1/2∠1.

∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

∴猜想正确.

jk251.cOm扩展阅读

经典初中教案切线的判定性质


(一)

教学目标:

1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

教学重点:切线的判定定理和切线判定的方法;

教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

教学过程设计

(一)复习、发现问题

1.直线与圆的三种位置关系

在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

2、观察、提出问题、分析发现(教师引导)

图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

(二)切线的判定定理:

1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

2、对定理的理解:

引导学生理解:①经过半径外端;②垂直于这条半径.

请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

(三)切线的判定方法

教师组织学生归纳.切线的判定方法有三种:

①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

(四)应用定理,强化训练'

例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

求证:直线AB是⊙O的切线.

分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

证明:连结0C

∵0A=0B,CA=CB,”

∴0C是等腰三角形0AB底边AB上的中线.

∴AB⊥OC.

直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

练习1判断下列命题是否正确.

(1)经过半径外端的直线是圆的切线.

(2)垂直于半径的直线是圆的切线.

(3)过直径的外端并且垂直于这条直径的直线是圆的切线.

(4)和圆有一个公共点的直线是圆的切线.

(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

采取学生抢答的形式进行,并要求说明理由,

练习P106,1、2

目的:使学生初步会应用切线的判定定理,对定理加深理解)

(五)小结

1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

2、方法:判定一条直线是圆的切线的三种方法:

(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

(3)根据切线的判定定理来判定.

其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

3、能力:初步会应用切线的判定定理.

(六)作业P115中2、4、5;P117中B组1.

(二)

教学目标:

1、使学生理解切线的性质定理及推论;

2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;

教学重点:切线的性质定理和推论1、推论2.

教学难点:利用“反证法”来证明切线的性质定理.

教学设计:

(一)基本性质

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;

猜想:圆的切线垂直于经过切点的半径.

引导学生应用“反证法”证明.分三步:

(1)假设切线AT不垂直于过切点的半径OA,

(2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.

(3)承认所要的结论AT⊥AO.

切线的性质定理:圆的切线垂直于经过切点的半径.

指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.

引导学生发现:

推论1:经过圆心且垂直于切线的直线必经过切点.

推论2:经过切点且垂于切线的直线必经过圆心.

引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:

如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

(1)垂直于切线;

(2)过切点;

(3)过圆心.

(二)归纳切线的性质

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

(三)应用举例,强化训练.

例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

求证:AC平分∠DAB.

引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.

证明:连结OC.

∴AC平分∠DAB.

例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。

已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD

求证:连结E、F的线段是直径。

证明:连结EO并延长

∵AB切⊙O于E,∴OE⊥AB,

∵AB∥CD,∴OE⊥CD.

∵CD是⊙O切线,F为切点,∴OE必过切点F

∴EF为⊙O直径

强化训练:P109,1

3、求证:经过直径两端点的切线互相平行。

已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B

求证:MN∥CD

证明:∵MN切⊙O于A,AB为⊙O直径

∴MN⊥AB

∵CD切⊙O于B,B为半径外端

∴CD⊥AB,

∴MN∥CD.

(四)小结

1、知识:切线的性质:

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

2、能力和方法:

凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.

(五)作业教材P109练习2;教材P116中7.

(三)

教学目标:

1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;

2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;

3、通过对切线的综合型例题分析和论证,激发学生的思维.

教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.

教学难点:综合型例题分析和论证的思维过程.

教学设计:

(一)复习与归纳

1、切线的判定

切线的判定方法有三种:

①直线与圆有唯一公共点;

②直线到圆心的距离等于该圆的半径;

③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.

2、切线的性质:

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

(二)灵活应用

例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

证明:连结OD.

∵OA=OD,∴∠1=∠2,

∵AD∥OC,∴∠1=∠3、∠2=∠4

∴∠3=∠4

在△OBC和△ODC中,

OB=OD,∠3=∠4,OC=OC,

∴△OBC≌△ODC,∴∠OBC=∠ODC.

∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.

∴DC是⊙O的切线.

例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

证明:连结OE,过O作OF⊥CD,垂足为F.

∵AB与小圆O切于点点E,∴OE⊥AB.

又∵AB=CD,

∴OF=OE,又OF⊥CD,

∴CD与小圆O相切.

学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);

(2)“连结”过切点的半径,产生垂直的位置关系.

例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点

求证:CE=CF

证明:连结OE

∵BE=BO∴∠3=∠B

∵CE切⊙O于E

∴OE⊥CE∠2+∠3=90°

∵CD⊥AB∴∠4+∠B=90°

∴∠2=∠4

∵∠1=∠4∴∠1=∠2

∴CE=CF

以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.

巩固练习:P111练习1、2.

(三)小结:

1、知识:(指导学生归纳)切线的判定方法和切线的性质

2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.

(四)作业:教材P115,1(1)、2、3.

探究活动

问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.

(1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;

(2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;

猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.

解:(1)测量结果:

(2)图2中的测量结果:

图3中的测量结果:

猜想:

证明:

解:(1)测量结果:∠CDP=45°.

(2)图2中的测量结果:∠CDP=45°.

图3中的测量结果:∠CDP=45°.

猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.

证明:连结OC.

∵PC切⊙O于点C,

∴PC⊥OC,

∴∠1+∠CPO=90°,

∵PC平分∠APC,

∴∠2=1/2∠CPO.

∵OA=OC

∴∠A=∠3.

∴∠1=∠A+∠3,

∴∠A=1/2∠1.

∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

∴猜想正确.

切线的判定性质的教学方案


(一)

教学目标:

1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

教学重点:切线的判定定理和切线判定的方法;

教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

教学过程设计

(一)复习、发现问题

1.直线与圆的三种位置关系

在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

2、观察、提出问题、分析发现(教师引导)

图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

(二)切线的判定定理:

1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

2、对定理的理解:

引导学生理解:①经过半径外端;②垂直于这条半径.

请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

(三)切线的判定方法

教师组织学生归纳.切线的判定方法有三种:

①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

(四)应用定理,强化训练'

例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

求证:直线AB是⊙O的切线.

分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

证明:连结0C

∵0A=0B,CA=CB,”

∴0C是等腰三角形0AB底边AB上的中线.

∴AB⊥OC.

直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

练习1判断下列命题是否正确.

(1)经过半径外端的直线是圆的切线.

(2)垂直于半径的直线是圆的切线.

(3)过直径的外端并且垂直于这条直径的直线是圆的切线.

(4)和圆有一个公共点的直线是圆的切线.

(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

采取学生抢答的形式进行,并要求说明理由,

练习P106,1、2

目的:使学生初步会应用切线的判定定理,对定理加深理解)

(五)小结

1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

2、方法:判定一条直线是圆的切线的三种方法:

(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

(3)根据切线的判定定理来判定.

其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

3、能力:初步会应用切线的判定定理.

(六)作业P115中2、4、5;P117中B组1.

(二)

教学目标:

1、使学生理解切线的性质定理及推论;

2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;

教学重点:切线的性质定理和推论1、推论2.

教学难点:利用“反证法”来证明切线的性质定理.

教学设计:

(一)基本性质

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;

猜想:圆的切线垂直于经过切点的半径.

引导学生应用“反证法”证明.分三步:

(1)假设切线AT不垂直于过切点的半径OA,

(2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.

(3)承认所要的结论AT⊥AO.

切线的性质定理:圆的切线垂直于经过切点的半径.

指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.

引导学生发现:

推论1:经过圆心且垂直于切线的直线必经过切点.

推论2:经过切点且垂于切线的直线必经过圆心.

引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:

如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

(1)垂直于切线;

(2)过切点;

(3)过圆心.

(二)归纳切线的性质

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

(三)应用举例,强化训练.

例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

求证:AC平分∠DAB.

引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.

证明:连结OC.

∴AC平分∠DAB.

例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。

已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD

求证:连结E、F的线段是直径。

证明:连结EO并延长

∵AB切⊙O于E,∴OE⊥AB,

∵AB∥CD,∴OE⊥CD.

∵CD是⊙O切线,F为切点,∴OE必过切点F

∴EF为⊙O直径

强化训练:P109,1

3、求证:经过直径两端点的切线互相平行。

已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B

求证:MN∥CD

证明:∵MN切⊙O于A,AB为⊙O直径

∴MN⊥AB

∵CD切⊙O于B,B为半径外端

∴CD⊥AB,

∴MN∥CD.

(四)小结

1、知识:切线的性质:

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

2、能力和方法:

凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.

(五)作业教材P109练习2;教材P116中7.

(三)

教学目标:

1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;

2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;

3、通过对切线的综合型例题分析和论证,激发学生的思维.

教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.

教学难点:综合型例题分析和论证的思维过程.

教学设计:

(一)复习与归纳

1、切线的判定

切线的判定方法有三种:

①直线与圆有唯一公共点;

②直线到圆心的距离等于该圆的半径;

③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.

2、切线的性质:

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

(二)灵活应用

例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

证明:连结OD.

∵OA=OD,∴∠1=∠2,

∵AD∥OC,∴∠1=∠3、∠2=∠4

∴∠3=∠4

在△OBC和△ODC中,

OB=OD,∠3=∠4,OC=OC,

∴△OBC≌△ODC,∴∠OBC=∠ODC.

∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.

∴DC是⊙O的切线.

例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

证明:连结OE,过O作OF⊥CD,垂足为F.

∵AB与小圆O切于点点E,∴OE⊥AB.

又∵AB=CD,

∴OF=OE,又OF⊥CD,

∴CD与小圆O相切.

学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);

(2)“连结”过切点的半径,产生垂直的位置关系.

例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点

求证:CE=CF

证明:连结OE

∵BE=BO∴∠3=∠B

∵CE切⊙O于E

∴OE⊥CE∠2+∠3=90°

∵CD⊥AB∴∠4+∠B=90°

∴∠2=∠4

∵∠1=∠4∴∠1=∠2

∴CE=CF

以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.

巩固练习:P111练习1、2.

(三)小结:

1、知识:(指导学生归纳)切线的判定方法和切线的性质

2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.

(四)作业:教材P115,1(1)、2、3.

探究活动

问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.

(1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;

(2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;

猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.

解:(1)测量结果:

(2)图2中的测量结果:

图3中的测量结果:

猜想:

证明:

解:(1)测量结果:∠CDP=45°.

(2)图2中的测量结果:∠CDP=45°.

图3中的测量结果:∠CDP=45°.

猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.

证明:连结OC.

∵PC切⊙O于点C,

∴PC⊥OC,

∴∠1+∠CPO=90°,

∵PC平分∠APC,

∴∠2=1/2∠CPO.

∵OA=OC

∴∠A=∠3.

∴∠1=∠A+∠3,

∴∠A=1/2∠1.

∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

∴猜想正确.

切线的判定性质相关教学方案


(一)

教学目标:

1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

教学重点:切线的判定定理和切线判定的方法;

教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

教学过程设计

(一)复习、发现问题

1.直线与圆的三种位置关系

在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

2、观察、提出问题、分析发现(教师引导)

图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.

(二)切线的判定定理:

1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

2、对定理的理解:

引导学生理解:①经过半径外端;②垂直于这条半径.

请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

(三)切线的判定方法

教师组织学生归纳.切线的判定方法有三种:

①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

(四)应用定理,强化训练'

例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

求证:直线AB是⊙O的切线.

分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。

证明:连结0C

∵0A=0B,CA=CB,”

∴0C是等腰三角形0AB底边AB上的中线.

∴AB⊥OC.

直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

练习1判断下列命题是否正确.

(1)经过半径外端的直线是圆的切线.

(2)垂直于半径的直线是圆的切线.

(3)过直径的外端并且垂直于这条直径的直线是圆的切线.

(4)和圆有一个公共点的直线是圆的切线.

(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

采取学生抢答的形式进行,并要求说明理由,

练习P106,1、2

目的:使学生初步会应用切线的判定定理,对定理加深理解)

(五)小结

1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

2、方法:判定一条直线是圆的切线的三种方法:

(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

(3)根据切线的判定定理来判定.

其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

3、能力:初步会应用切线的判定定理.

(六)作业P115中2、4、5;P117中B组1.

第123页

数学教案-切线长定理教案模板


1、教材分析

(1)知识结构

(2)重点、难点分析

重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.

难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.

2、教法建议

本节内容需要一个课时.

(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;

(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.

教学目标

1.理解切线长的概念,掌握切线长定理;

2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.

3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.

教学重点:

切线长定理是教学重点

教学难点:

切线长定理的灵活运用是教学难点

教学过程设计:

(一)观察、猜想、证明,形成定理

1、切线长的概念.

如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.

引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.

2、观察

利用电脑变动点P的位置,观察图形的特征和各量之间的关系.

3、猜想

引导学生直观判断,猜想图中PA是否等于PB.PA=PB.

4、证明猜想,形成定理.

猜想是否正确。需要证明.

组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.

想一想:根据图形,你还可以得到什么结论?

∠OPA=∠OPB(如图)等.

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

5、归纳:

把前面所学的切线的5条性质与切线长定理一起归纳切线的性质

6、切线长定理的基本图形研究

如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C

(1)写出图中所有的垂直关系;

(2)写出图中所有的全等三角形;

(3)写出图中所有的相似三角形;

(4)写出图中所有的等腰三角形.

说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.

(二)应用、归纳、反思

例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,

A和B是切点,BC是直径.

求证:AC∥OP.

分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.

从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.

证法一.如图.连结AB.

PA,PB分别切⊙O于A,B

∴PA=PB∠APO=∠BPO

∴OP⊥AB

又∵BC为⊙O直径

∴AC⊥AB

∴AC∥OP(学生板书)

证法二.连结AB,交OP于D

PA,PB分别切⊙O于A、B

∴PA=PB∠APO=∠BPO

∴AD=BD

又∵BO=DO

∴OD是△ABC的中位线

∴AC∥OP

证法三.连结AB,设OP与AB弧交于点E

PA,PB分别切⊙O于A、B

∴PA=PB

∴OP⊥AB

∴=

∴∠C=∠POB

∴AC∥OP

反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.

例2、圆的外切四边形的两组对边的和相等.

(分析和解题略)

反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.

P120练习:

练习1填空

如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________

练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.

分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果.

(解略)

反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.

(三)小结

1、提出问题学生归纳

(1)这节课学习的具体内容;

(2)学习用的数学思想方法;

(3)应注意哪些概念之间的区别?

2、归纳基本图形的结论

3、学习了用代数方法解决几何问题的思想方法.

(四)作业

教材P131习题7.4A组1.(1),2,3,4.B组1题.

探究活动

图中找错

你能找出(图1)与(图2)的错误所在吗?

在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.

提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.

在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有

a=P1A=P1P3+P3A=P1P3+c①

c=P3C=P2P3+P3A=P2P3+b②

a=P1B=P1P2+P2B=P1P2+b③

将②代人①式得

a=P1P3+(P2P3+b)=P1P3+P2P3+b,

∴a-b=P1P3+P2P3

由③得a-b=P1P2得

∴P1P2=P2P3+P1P3

∴P1、P2、P3应重合,故图2是错误的.

数学教案-合比性质等比性质例教案模板


石佛镇素质教育研讨会

教研课

教案设计

教者:龙秀明

教学课题:合比性质和等比性质

教学目标:1、掌握合比性质的等比性质,并会用它们进行简单的比例变形

2、会将合比性质、等比性质用于比例线段。

3、提高学生类比联想、推广命题的能力。

教学重、难点:

熟练地、灵活地运用合比性质与等比性质。

课前准备:

小黑板、幻灯机及幻灯片。

教学过程:

一、复习引入:

我们在前边学习了线段的比,比例的有关概念及性质,那么请同学们回忆

1、什么叫线段的比?

2、什么叫成比例线段?

我们还学习了比例的基本性质,那么,除此之外,比例还有一些什么性质呢?

这就是本节课我们将要研究的比例的合比性质与等比性质。(出示课题:合比性质与等比性质)

那么,通过本节课的学习我们要达到一个什么样的要求呢?(出示小黑板)看学习目标1、2,(全班同学齐读)

下边请同学们再回忆,我们在上一章学习的平等线等分线段定理是如何叙述的?(抽同学回答)

请看幻灯(投影显示)

二、(用特殊化方法)探索合比性质。

1、复习,已知:一组平行线在直线l上截得的线段AB=BC=CD=DE=EF则由平行线等分线段定理可得一个结论:即A´B´=B´C´=C´D´=D´E´=E´F´。

2、将上述结论改写成比例式,由此猜想得出结论,引导学生思考:如果设在l上截得的每一份为k,问AD=?DF=?

又设在l1上截得的一等份为m,问A´D´=?D´F´=?

观察以上分析,可得出一个什么样的结论?

又观察与有什么关系?对于一般的比例

式都有这一个关系吗?请猜一猜。

猜想:学生口述(同学间可相互讨论、研究)

教师根据学生口述、写出:

如果

3、证明猜想,得出合比性质,

我们这个猜想,是否正确呢?

(1)启发学生观察,已知与未知的关系,寻找证明思路,证法一:(设比法)

证法二、(利用等比性质2)

∵∴∴

(2)类比联想,得到分比性质。

如果

学生自由讨论,可仿上边自己证明结论。

在今后,这两种情形都叫合比性质,即

如果

(3)理解合比性质的内容,师生一起用文字语言叙述。

4、类比联想,将合比性质推广。

在合比性质的表达式中,

(1)比例的二、四项保持不变,

(2)比例的前后磺对应求和或差,作为新比例式的第一、三比例项。

由此,可作出以下类比联想,并使用比例的基本性质进行证明。

猜想一,(教师引导)如果

二……如果

三……如果等等。

对这几个猜想出来的问题,其基本思考方法有两种:

(1)通过一定的方法,将它们变形利用合比性质的结果,证明时,可灵活运用以下变形方法。

①同时交换比例的内或外项,(更比)

如果

②同时交换比例的前后项,(反比)

如果

比如证明猜想三,如果

(2)对原合比性质的证明方法进行类比、联想来进行证明(设比法)

三、利用合比性质来证明等比性质的特例,并推广。

1、练习(投影显示)

证明:

2、观察上述练习的两个结论,并对一般情况作出猜想,对练习中相等的比值的比个数进行推广。

如果

3、利用设比法进行证明,得出等比性质,同学们自己练习,后与教材P20对比。

4、强调证明方法“设比法”。

设几个相等的比值为k,用它们表示出每个比的前项(或后项)利用代数运算证明比例问题,这种思想方法在比例问题中经常用到。

四、简单运用(出示小黑板)

(1)已知:,

(2)已知:

(3)已知:=

注意:①合比性质与等比性质的证明方法和结论都很重要,都可用来证明有关比例式的问题。如第三题一问

解法1、

解法2、

第二问可用解法2。

②还常以另一种形式出现,即x:y:z=4:3:6但此时不能设。

五、师生共同小结,看书完成P203练习

1、合比性质,等比性质及常用变形,尤其注意等比性质的使用条件。

2、证明两个性质时所用到的“设比法”的证明方法。

3、类比联想,推广命题,由特殊到一般,再进行证明的方法。

六、练习:(1)已知求的值;

(2)已知求的值;

(3)已知求的值;

(4)已知试求的值。

由(4)题思考通过作第(4)题得出结论,结合前边所学内容猜想,你能得出什么结论,并试证之。

板书设计:

合比性质与等比性质

1、合比性质:2、等比性质:小黑板①②③

内容内容小结1、

证明:证明:2、

推广①推广

数学教案-分式的基本性质教案模板


第一课时

(一)教学过程

【复习提问】

1.分式的定义?

2.分数的基本性质?有什么用途?

【新课】

1.类比分数的基本性质,由学生小结出分式的基本性质:

分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

(其中是不等于零的整式.)

2.加深对分式基本性质的理解:

例1下列等式的右边是怎样从左边得到的?

(1);

由学生口述分析,并反问:为什么?

解:∵

∴.

(2);

学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)

解:∵

∴.

(3)

学生口答.

解:∵,

∴.

例2填空:

(1);

(2);

(3);

(4).

把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.

例3不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.

(1);

分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

解:.

(2).

解:.

例4判断取何值时,等式成立?

学生分组讨论后得出结果:

∴.

(二)随堂练习

1.当为何值时,与的值相等()

A.B.C.D.

2.若分式有意义,则,满足条件为()

A.B.C.D.以上答案都不对

3.下列各式不正确的是()

A.B.

C.D.

4.若把分式的和都扩大两倍,则分式的值

A.扩大两倍B.不变

C.缩小两倍D.缩小四倍

(三)总结、扩展

1.分式的基本性质.

2.性质中的可代表任何非零整式.

3.注意挖掘题目中的隐含条件.

4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.

(四)布置作业

教材P61中2、3;P62中B组的1

(五)板书设计

数学教案-两圆的公切线


第一课时两圆的公切线(一)

教学目标:

(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;

(2)培养学生的归纳、总结能力;

(3)通过两圆外公切线长的求法向学生渗透“转化”思想.

教学重点:

理解两圆相切长等有关概念,两圆外公切线的求法.

教学难点:

两圆外公切线和两圆外公切线长学生理解的不透,容易混淆.

教学活动设计

(一)实际问题(引入)

很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象.(这里是一种简单的数学建模,了解数学产生与实践)

(二)两圆的公切线概念

1、概念:

教师引导学生自学.给出两圆的外公切线、内公切线以及公切线长的定义:

和两圆都相切的直线,叫做两圆的公切线.

(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.

(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.

(3)公切线的长:公切线上两个切点的距离叫做公切线的长.

2、理解概念:

(1)公切线的长与切线的长有何区别与联系?

(2)公切线的长与公切线又有何区别与联系?

(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点.

(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量.

(三)两圆的位置与公切线条数的关系

组织学生观察、概念、概括,培养学生的学习能力.添写教材p143练习第2题表.

(四)应用、反思、总结

例1、已知:⊙o1、⊙o2的半径分别为2cm和7cm,圆心距o1o2=13cm,ab是⊙o1、⊙o2的外公切线,切点分别是a、b.求:公切线的长ab.

分析:首先想到切线性质,故连结o1a、o2b,得直角梯形ao1o2b.一般要把它分解成一个直角三角形和一个矩形,再用其性质.(组织学生分析,教师点拨,规范步骤)

解:连结o1a、o2b,作o1a⊥ab,o2b⊥ab.

过o1作o1c⊥o2b,垂足为c,则四边形o1abc为矩形,

于是有

o1c⊥co2,o1c=ab,o1a=cb.

在rt△o2co1和.

o1o2=13,o2c=o2b-o1a=5

ab=o1c=(cm).

反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法.

例2*、如图,已知⊙o1、⊙o2外切于p,直线ab为两圆的公切线,a、b为切点,若pa=8cm,pb=6cm,求切线ab的长.

分析:因为线段ab是△apb的一条边,在△apb中,已知pa和pb的长,只需先证明△pab是直角三角形,然后再根据勾股定理,使问题得解.证△pab是直角三角形,只需证△apb中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过p作两圆的公切线cd如图,因为ab是两圆的公切线,所以∠cpb=∠abp,∠cpa=∠bap.因为∠bap+∠cpa+∠cpb+∠abp=180°,所以2∠cpa+2∠cpb=180°,所以∠cpa+∠cpb=90°,即∠apb=90°,故△apb是直角三角形,此题得解.

解:过点p作两圆的公切线cd

∵ab是⊙o1和⊙o2的切线,a、b为切点

∴∠cpa=∠bap∠cpb=∠abp

又∵∠bap+∠cpa+∠cpb+∠abp=180°

∴2∠cpa+2∠cpb=180°

∴∠cpa+∠cpb=90°即∠apb=90°

在rt△apb中,ab2=ap2+bp2

说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.

(五)巩固练习

1、当两圆外离时,外公切线、圆心距、两半径之差一定组成()

(a)直角三角形(b)等腰三角形(c)等边三角形(d)以上答案都不对.

此题考察外公切线与外公切线长之间的差别,答案(d)

2、外公切线是指

(a)和两圆都祖切的直线(b)两切点间的距离

(c)两圆在公切线两旁时的公切线(d)两圆在公切线同旁时的公切线

直接运用外公切线的定义判断.答案:(d)

3、教材p141练习(略)

(六)小结(组织学生进行)

知识:两圆的公切线、外公切线、内公切线及公切线的长概念;

能力:归纳、概括能力和求外公切线长的能力;

思想:“转化”思想.

(七)作业:p151习题10,11.

第二课时两圆的公切线(二)

教学目标:

(1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;

(2)培养的迁移能力,进一步培养学生的归纳、总结能力;

(3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.

教学重点:

两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.

教学难点:

两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.

教学活动设计

(一)复习基础知识

(1)两圆的公切线概念:公切线、内外公切线、内外公切线的长.

(2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)

(二)应用、反思

例1、(教材例2)已知:⊙o1和⊙o2的半径分别为4厘米和2厘米,圆心距为10厘米,ab是⊙o1和⊙o2的一条内公切线,切点分别是a,b.

求:公切线的长ab。

组织学生分析,迁移外公切线长的求法,既培养学生解决问题的能力,同时也培养学生学习的迁移能力.

解:连结o1a、o2b,作o1a⊥ab,o2b⊥ab.

过o1作o1c⊥o2b,交o2b的延长线于c,

则o1c=ab,o1a=bc.

在rt△o2co1和.

o1o2=10,o2c=o2b+o1a=6

∴o1c=(cm).

∴ab=8(cm)

反思:与外离两圆的内公切线有关的计算问题,常构造如此题的直角梯行及直角三角形,在rt△o2co1中,含有内公切线长、圆心距、两半径和重要数量.注意用解直角三角形的知识和几何知识综合去解构造后的直角三角形.

例2(教材例3)要做一个图那样的矿型架,将两个钢管托起,已知钢管的外径分别为200毫米和80毫米,求v形角α的度数.

解:(略)

反思:实际问题经过抽象、化简转化成数学问题,应用数学知识来解决,这是解决实际问题的重要方法.它属于简单的数学建模.

组织学生进行,教师引导.

归纳:(1)用解直角三角形的有关知识可得:当公切线长l、两圆的两半径和r+r、圆心距d、两圆公切线的夹角α四个量中已知两个量时,就可以求出其他两个量.

,;

(2)上述问题可以通过相似三角形和解三角形的知识解决.

(三)巩固训练

教材p142练习第1题,教材p145练习第1题.

学生独立完成,教师巡视,发现问题及时纠正.

(四)小结

(1)求两圆的内公切线,“转化”为解直角三角形问题.公切线长、圆心距、两半径和三个量中已知任何两个量,都可以求第三个量;

(2)如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上;

(3)求两圆两外(或内)公切线的夹角.

(五)作业

教材p153中12、13、14.

第三课时两圆的公切线(三)

教学目标:

(1)理解两圆公切线在解决有关两圆相切的问题中的作用,辅助线规律,并会应用;

(2)通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力.

教学重点:

会在证明两圆相切问题时,辅助线的引法规律,并能应用于几何题证明中.

教学难点:

综合知识的灵活应用和综合能力培养.

教学活动设计

(一)复习基础知识

(1)两圆的公切线概念.

(2)切线的性质,弦切角等有关概念.

(二)公切线在解题中的应用

例1、如图,⊙o1和⊙o2外切于点a,bc是⊙o1和⊙o2的公切线,b,c为切点.若连结ab、ac会构成一个怎样的三角形呢?

观察、度量实验(组织学生进行)

猜想:(学生猜想)∠bac=90°

证明:过点a作⊙o1和⊙o2的内切线交bc于点o.

∵oa、ob是⊙o1的切线,

∴oa=ob.

同理oa=oc.

∴oa=ob=oc.

∴∠bac=90°.

反思:(1)公切线是解决问题的桥梁,综合应用知识是解决问题的关键;(2)作两圆的公切线是常见的一种作辅助线的方法.

例2、己知:如图,⊙o1和⊙o2内切于p,大圆的弦ab交小圆于c,d.

求证:∠apc=∠bpd.

分析:从条件来想,两圆内切,可能作出的辅助线是作连心线o1o2,或作外公切线.

证明:过p点作两圆的公切线mn.

∵∠mpc=∠pdc,∠mpn=∠b,

∴∠mpc-∠mpn=∠pdc-∠b,

即∠apc=∠bpd.

反思:(1)作了两圆公切线mn后,弦切角就把两个圆中的圆周角联系起来了.要重视mn的“桥梁”作用.(2)此例证角相等的方法是利用已知角的关系计算.

拓展:(组织学生研究,培养学生深入研究问题的意识)

己知:如图,⊙o1和⊙o2内切于p,大圆⊙o1的弦ab与小圆⊙o2相切于c点.

是否有:∠apc=∠bpc即pc平分∠apb.

答案:有∠apc=∠bpc即pc平分∠apb.如图作辅助线,证明方法步骤参看典型例题中例4.

(三)练习

练习1、教材145练习第2题.

练习2、如图,已知两圆内切于p,大圆的弦ab切小圆于c,大圆的弦pd过c点.

求证:papb=pdpc.

证明:过点p作两圆的公切线ef

∵ab是小圆的切线,c为切点

∴∠fpc=∠bcp,∠fpb=∠a

又∵∠1=∠bcp-∠a∠2=∠fpc-∠fpb

∴∠1=∠2∵∠a=∠d,∴△pac∽△pdb

∴papb=pdpc

说明:此题在例2题的拓展的基础上解得非常容易.

(三)总结

学习了两圆的公切线,应该掌握以下几个方面

1、由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.

2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形.

3、常用的辅助线:

(1)两圆在各种情况下常考虑添连心线;

(2)两圆外切时,常添内公切线;两圆内切时,常添外公切线.

4、自己要有深入研究问题的意识,不断反思,不断归纳总结.

(四)作业教材p151习题中15,b组2.

探究活动

问题:如图1,已知两圆相交于a、b,直线cd与两圆分别相交于c、e、f、d.

(1)用量角器量出∠eaf与∠cbd的大小,根据量得结果,请你猜想∠eaf与∠cbd的大小之间存在怎样的关系,并证明你所得到的结论.

(2)当直线cd的位置如图2时,上题的结论是否还能成立?并说明理由.

(3)如果将已知中的“两圆相交”改为“两圆外切于点a”,其余条件不变(如图3),那么第(1)题所得的结论将变为什么?并作出证明.

提示:(1)(2)(3)都有∠eaf+∠cbd=180°.证明略(如图作辅助线).

说明:问题从操作测量得到的实验数据入手,进行数据分析,归傻贸霾孪耄っ鞑孪氤闪ⅲ庖彩数学发现的一种方法.第(2)、(3)题是对第(1)题结论的推广和特殊化.第(3)题中若cd移动到与两圆相切于点c、d,那么结论又将变为∠cad=90°.

数学教案-三角形全等的判定教案模板


课题:全等三角形的判定(一)

教学目标:

1、知识目标:

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等.

2、能力目标:

(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力.

3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

教学重点:学会运用公理证明两个三角形全等.

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、公理的发现

(1)画图:(投影显示)

教师点拨,学生边学边画图.

(2)实验

让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作.

(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一.

应用格式:

强调:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.

2、公理的应用

(1)讲解例1.学生分析完成,教师注重完成后的总结.

分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由图形可以得到几个条件?

解:(略)

(2)讲解例2

投影例2:

例2如图2,AE=CF,AD∥BC,AD=CB,

求证:

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书.教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论.(3)讲解例3(投影)

证明:(略)

学生分析思路,写出证明过程.

(投影展示学生的作业,教师点评)

(4)讲解例4(投影)

证明:(略)

学生口述过程.投影展示证明过程.

教师强调证明线段相等的几种常见方法.

(5)讲解例5(投影)

证明:(略)

学生思考、分析、讨论,教师巡视,适当参与讨论.

师生共同讨论后,让学生口述证明思路.

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.

3、课堂小结:

(1)判定三角形全等的方法:SAS

(2)公理应用的书写格式

(3)证明线段、角相等常见的方法有哪些?

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.

6、布置作业

a书面作业P56#6、7

b上交作业P57B组1

思考题:

板书设计:

探究活动

本文网址:http://m.jk251.com/jiaoan/9409.html

相关文章
最新更新

热门标签