导航栏

×
范文大全 > 初中教案

圆心角弧弦弦心距之间的关系相关教学方案

按照学校要求,初中老师都需要用到教案,教案是保证教学质量的基本条件,可以通过编写教案认识自己教学的优点和不足。有没有可以参考的初中教案呢?可以看看本站收集的《圆心角弧弦弦心距之间的关系相关教学方案》,希望能够为您提供参考。

第一课时(一)

教学目标:

(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

教学重点、难点:

重点:圆心角、弧、弦、弦心距之间关系定理的推论.

难点:从感性到理性的认识,发现、归纳能力的培养.

教学活动设计

教学内容设计

(一)圆的对称性和旋转不变性

学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

引出圆心角和弦心距的概念:

圆心角定义:顶点在圆心的角叫圆心角.

弦心距定义:从圆心到弦的距离叫做弦心距.

(二)

应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.

定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

(三)剖析定理得出推论

问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)

问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

(四)应用、巩固和反思

例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

解(略,教材87页)

例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

练习:(教材88页练习)

1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.

(1)如果AB=CD,那么______,______,______;

(2)如果OE=OG,那么______,______,______;

(3)如果=,那么______,______,______;

(4)如果∠AOB=∠COD,那么______,______,______.

(目的:巩固基础知识)

2、(教材88页练习3题,略.定理的简单应用)

(五)小结:学生自己归纳,老师指导.

知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

(六)作业:教材P99中1(1)、2、3.

第二课时(二)

教学目标:

(1)理解1°弧的概念,能熟练地应用本节知识进行有关计算;

(2)进一步培养学生自学能力,应用能力和计算能力;

(3)通过例题向学生渗透数形结合能力.

教学重点、难点:

重点:圆心角、弧、弦、弦心距之间的相等关系的应用.

难点:理解1°弧的概念.

教学活动设计:

(一)阅读理解

学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.

理解:

(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.

(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.

(3)圆心角的度数和它们对的弧的度数相等.

(二)概念巩固

1、判断题:

(1)等弧的度数相等();

(2)圆心角相等所对应的弧相等();

(3)两条弧的长度相等,则这两条弧所对应的圆心角相等()

2、解得题:

(1)度数是5°的圆心角所对的弧的度数是多少?为什么?

(2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角?

(3)n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?

(三)疑难解得

对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.

特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.

(四)应用、归纳、反思

例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.

学生自主分析,写出解题过程,交流指导.

解:(参看教材P89)

注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.

反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.

例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.

题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.

(解答参考教材P90)

题目拓展:

1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:=.

2、已知:如上图,已知AB和CD是⊙O的两条直径,弦=,求证:CE∥AB.

目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.

(五)小节(略)

(六)作业:教材P100中4、5题.

探究活动

我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.

解(略)

①AB=CD;

②=.(等等)

jk251.cOm扩展阅读

经典初中教案圆心角弧弦弦心距之间的关系


第一课时(一)

教学目标:

(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

教学重点、难点:

重点:圆心角、弧、弦、弦心距之间关系定理的推论.

难点:从感性到理性的认识,发现、归纳能力的培养.

教学活动设计

教学内容设计

(一)圆的对称性和旋转不变性

学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

引出圆心角和弦心距的概念:

圆心角定义:顶点在圆心的角叫圆心角.

弦心距定义:从圆心到弦的距离叫做弦心距.

(二)

应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.

定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

(三)剖析定理得出推论

问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)

问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

(四)应用、巩固和反思

例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

解(略,教材87页)

例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

练习:(教材88页练习)

1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.

(1)如果AB=CD,那么______,______,______;

(2)如果OE=OG,那么______,______,______;

(3)如果=,那么______,______,______;

(4)如果∠AOB=∠COD,那么______,______,______.

(目的:巩固基础知识)

2、(教材88页练习3题,略.定理的简单应用)

(五)小结:学生自己归纳,老师指导.

知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

(六)作业:教材P99中1(1)、2、3.

第12页

数学教案-圆心角弧弦弦心距之间的关系初中教案精选


第一课时圆心角、弧、弦、弦心距之间的关系(一)

教学目标:

(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

教学重点、难点:

重点:圆心角、弧、弦、弦心距之间关系定理的推论.

难点:从感性到理性的认识,发现、归纳能力的培养.

教学活动设计

教学内容设计

(一)圆的对称性和旋转不变性

学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

引出圆心角和弦心距的概念:

圆心角定义:顶点在圆心的角叫圆心角.

弦心距定义:从圆心到弦的距离叫做弦心距.

(二)圆心角、弧、弦、弦心距之间的关系

应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.

定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

(三)剖析定理得出推论

问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

举出反例:如图,∠AOB=∠COD,但ABCD,.(强化对定理的理解,培养学生的思维批判性.)

问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

(四)应用、巩固和反思

例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

解(略,教材87页)

例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

练习:(教材88页练习)

1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.

(1)如果AB=CD,那么______,______,______;

(2)如果OE=OG,那么______,______,______;

(3)如果=,那么______,______,______;

(4)如果∠AOB=∠COD,那么______,______,______.

(目的:巩固基础知识)

2、(教材88页练习3题,略.定理的简单应用)

(五)小结:学生自己归纳,老师指导.

知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

(六)作业:教材P99中1(1)、2、3.

第二课时圆心角、弧、弦、弦心距之间的关系(二)

教学目标:

(1)理解1°弧的概念,能熟练地应用本节知识进行有关计算;

(2)进一步培养学生自学能力,应用能力和计算能力;

(3)通过例题向学生渗透数形结合能力.

教学重点、难点:

重点:圆心角、弧、弦、弦心距之间的相等关系的应用.

难点:理解1°弧的概念.

教学活动设计:

(一)阅读理解

学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.

理解:

(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.

(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.

(3)圆心角的度数和它们对的弧的度数相等.

(二)概念巩固

1、判断题:

(1)等弧的度数相等();

(2)圆心角相等所对应的弧相等();

(3)两条弧的长度相等,则这两条弧所对应的圆心角相等()

2、解得题:

(1)度数是5°的圆心角所对的弧的度数是多少?为什么?

(2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角?

(3)n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?

(三)疑难解得

对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.

特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.

(四)应用、归纳、反思

例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.

学生自主分析,写出解题过程,交流指导.

解:(参看教材P89)

注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.

反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.

例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.

题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.

(解答参考教材P90)

题目拓展:

1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:=.

2、已知:如上图,已知AB和CD是⊙O的两条直径,弦=,求证:CE∥AB.

目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.

(五)小节(略)

(六)作业:教材P100中4、5题.

探究活动

我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.

解(略)

①AB=CD;

②=.(等等)

数学教案-垂直于弦的直径的教学方案


第一课时垂直于弦的直径(一)

教学目标:

(1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;

(2)进一步培养学生观察问题、分析问题和解决问题的能力;

(3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.

教学重点、难点:

重点:①垂径定理及应用;②从感性到理性的学习能力.

难点:垂径定理的证明.

教学学习活动设计:

(一)实验活动,提出问题:

1、实验:让学生用自己的方法探究圆的对称性,教师引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.

2、提出问题:老师引导学生观察、分析、发现和提出问题.

通过“演示实验——观察——感性——理性”引出垂径定理.

(二)垂径定理及证明:

已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.

求证:AE=EB,=,=.

证明:连结OA、OB,则OA=OB.又∵CD⊥AB,∴直线CD是等腰△OAB的对称轴,又是⊙O的对称轴.所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,、分别和、重合.因此,AE=BE,=,=.从而得到圆的一条重要性质.

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

组织学生剖析垂径定理的条件和结论:

CD为⊙O的直径,CD⊥ABAE=EB,=,=.

为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.加深对定理的理解,突出重点,分散难点,避免学生记混.

(三)应用和训练

例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.

分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,而AE=EB=AB=4cm.此时解Rt△AOE即可.

解:连结OA,作OE⊥AB于E.

则AE=EB.

∵AB=8cm,∴AE=4cm.

又∵OE=3cm,

在Rt△AOE中,

(cm).

∴⊙O的半径为5cm.

说明:①学生独立完成,老师指导解题步骤;②应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

关系:r=h+d;r2=d2+(a/2)2

例2、已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证AC=BD.(证明略)

说明:此题为基础题目,对各个层次的学生都要求独立完成.

练习1:教材P78中练习1,2两道题.由学生分析思路,学生之间展开评价、交流.

指导学生归纳:①构造垂径定理的基本图形,垂径定理和勾股定理的结合是计算弦长、半径、弦心距等问题的常用方法;②在圆中解决弦的有关问题经常作的辅助线——弦心距.

(四)小节与反思

教师组织学生进行:

知识:(1)圆的轴对称性;(2)垂径定理及应用.

方法:(1)垂径定理和勾股定理有机结合计算弦长、半径、弦心距等问题的方法,构造直角三角形;(2)在因中解决与弦有关问题经常作的辅助线——弦心距;(3)为了更好理解垂径定理,一条直线只要满足①过圆心;②垂直于弦;则可得③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.

(五)作业

教材P84中11、12、13.

第二课时垂直于弦的直径(二)

教学目标:

(1)使学生掌握垂径定理的两个推论及其简单的应用;

(2)通过对推论的探讨,逐步培养学生观察、比较、分析、发现问题,概括问题的能力.促进学生创造思维水平的发展和提高

(3)渗透一般到特殊,特殊到一般的辩证关系.

教学重点、难点:

重点:①垂径定理的两个推论;②对推论的探究方法.

难点:垂径定理的推论1.

学习活动设计:

(一)分解定理(对定理的剖析)

1、复习提问:定理:垂直于弦的直径平分这条弦,并且平分弦所对应的两条弧.

2、剖析:

(教师指导)

(二)新组合,发现新问题:(A层学生自己组合,小组交流,B层学生老师引导)

,,……(包括原定理,一共有10种)

(三)探究新问题,归纳新结论:

(1)平分弦(不是直径)的直径垂直于弦,并且平分弦对应的两条弧.

(2)弦的垂直平分线经过圆心,并且平分弦对应的两条弧.

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

(4)圆的两条平行线所夹的弧相等.

(四)巩固练习:

练习1、“平分弦的直径垂直于弦,并且平分弦所对的两条弧”这句话对吗?为什么?

(在推论1(1)中,为什么要附加“不是直径”这一条件.)

练习2、按图填空:在⊙O中,

(1)若MN⊥AB,MN为直径,则________,________,________;

(2)若AC=BC,MN为直径,AB不是直径,则则________,________,________;

(3)若MN⊥AB,AC=BC,则________,________,________;

(4)若=,MN为直径,则________,________,________.

(此题目的:巩固定理和推论)

(五)应用、反思

例、四等分.

(A层学生自主完成,对于其他层次的学生在老师指导下完成)

教材P80中的第3题图,是典型的错误作.

此题目的:是引导学生应用定理及推论来平分弧的方法,通过学生自主操作培养学生的动手能力;通过与教材P80中的第3题图的对比,加深学生对感性知识的认识及理性知识的理解.培养学生的思维能力.

(六)小结:

知识:垂径定理的两个推论.

能力:①推论的研究方法;②平分弧的作图.

(七)作业:教材P84中14题.

第三课时垂径定理及推论在解题中的应用

教学目的:

⑴要求学生掌握垂径定理及其推论,会解决有关的证明,计算问题.

⑵培养学生严谨的逻辑推理能力;提高学生方程思想、分类讨论思想的应用意识.

⑶通过例4(赵州桥)对学生进行爱国主义的教育;并向学生渗透数学来源于实践,又反过来服务于实践的辩证唯物主义思想

教学重点:垂径定理及其推论在解题中的应用

教学难点:如何进行辅助线的添加

教学内容:

(一)复习

1.垂径定理及其推论1:对于一条直线和一个圆来说,具备下列五个条件中的任何个,那么也具有其他三个:⑴直线过圆心;⑵垂直于弦;⑶平分弦;⑷平分弦所对的优弧;⑸平分弦所对的劣弧.可简记为:“知2推3”

推论2:圆的两条平行弦所夹的弧相等.

2.应用垂径定理及其推论计算(这里不管什么层次的学生都要自主研究)

涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

关系:r=h+d;r2=d2+(a/2)2

3.常添加的辅助线:(学生归纳)

⑴作弦心距;⑵作半径.------构造直角三角形

4.可用于证明:线段相等、弧相等、角相等、垂直关系;同时为圆中的计算、作图提供依据.

(二)应用例题:(让学生分析,交流,解答,老师引导学生归纳)

例1、1300多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧中点到弦的距离,也叫弓形的高)为7.2米,求桥拱的半径(精确到0.1米).

说明:①对学生进行爱国主义的教育;②应用题的解题思路:实际问题——(转化,构造直角三角形)——数学问题.

例2、已知:⊙O的半径为5,弦AB∥CD,AB=6,CD=8.求:AB与CD间的距离.(让学生画图)

解:分两种情况:

(1)当弦AB、CD在圆心O的两侧

过点O作EF⊥AB于E,连结OA、OC,

又∵AB∥CD,∴EF⊥CD.(作辅助线是难点,学生往往作OE⊥AB,OF⊥AB,就得EF=OE+OF,错误的结论)

由EF过圆心O,EF⊥AB,AB=6,得AE=3,

在Rt△OEA中,由勾股定理,得

,∴

同理可得:OF=3

∴EF=OE+OF=4+3=7.

(2)当弦AB、CD在圆心O的同侧

同(1)的方法可得:OE=4,OF=3.

∴.

说明:①此题主要是渗透分类思想,培养学生的严密性思维和解题方法:确定图形——分析图形——数形结合——解决问题;②培养学生作辅助线的方法和能力.

例3、已知:如图,AB是⊙O的弦,半径OC∥AB,AB=24,OC=15.求:BC的长.

解:(略,过O作OE⊥AE于E,过B作BF⊥OC于F,连结OB.BC=)

说明:通过添加辅助线,构造直角三角形,并把已知与所求线段之间找到关系.

(三)应用训练:

P8l中1题.

在直径为650mm的圆柱形油槽内装入一些油后.截面如图所示,若油面宽AB=600mm,求油的最大深度.

学生分析,教师适当点拨.

分析:要求油的最大深度,就是求有油弓形的高,弓形的高是半径与圆心O到弦的距离差,从而不难看出它与半径和弦的一半可以构造直角三角形,然后利用垂径定理和勾股定理来解决.

(四)小结:

1.垂径定理及其推论的应用注意指明条件.

2.应用定理可以证明的问题;注重构造思想,方程思想、分类思想在解题中的应用.

(五)作业:教材P84中15、16题,P85中B组2、3题.

探究活动

如图,直线MN与⊙O交于点A、B,CD是⊙O的直径,CE⊥MN于E,DF⊥MN于F,OH⊥MN于H.

(1)线段AE、BF之间存在怎样的关系?线段CE、OH、DF之间满足怎样的数量关系?并说明理由.

(2)当直线CD的两个端点在MN两侧时,上述关系是否仍能成立?如果不成立,它们之间又有什么关系?并说明理由.

(答案提示:(1)AE=BF,CE+DF=2OH,(2)AE=BF仍然成立,CE+DF=2OH不能成立.CE、DF、OH之间应满足)

圆的周长弧长相关教学方案


圆周长、弧长(一)

教学目标:

1、初步掌握圆周长、弧长公式;

2、通过弧长公式的推导,培养学生探究新问题的能力;

3、调动学生的积极性,培养学生的钻研精神;

4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力.

教学重点:弧长公式.

教学难点:正确理解弧长公式.

教学活动设计:

(一)复习(圆周长)

已知⊙O半径为R,⊙O的周长C是多少?

C=2πR

这里π=3.14159…,这个无限不循环的小数叫做圆周率.

由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.

(二)探究新问题、归纳结论

教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

研究步骤:

(1)圆周长C=2πR;

(2)1°圆心角所对弧长=;

(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

(4)n°圆心角所对弧长=.

归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则

(弧长公式)

(三)理解公式、区分概念

教师引导学生理解:

(1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

(2)公式可以理解记忆(即按照上面推导过程记忆);

(3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.

(四)初步应用

例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d(精确到1mm).

分析:(1)圆环的宽度与同心圆半径有什么关系?

(2)已知周长怎样求半径?

(学生独立完成)

解:设外圆的半径为R1,内圆的半径为R2,则

d=.

∵,,

∴(cm)

例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

教师引导学生把实际问题抽象成数学问题,渗透数学建模思想.

解:由弧长公式,得

(mm)

所要求的展直长度

L(mm)

答:管道的展直长度为2970mm.

课堂练习:P176练习1、4题.

(五)总结

知识:圆周长、弧长公式;圆周率概念;

能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题.

(六)作业教材P176练习2、3;P186习题3.

圆周长、弧长(二)

教学目标:

1、应用圆周长、弧长公式综合圆的有关知识解答问题;

2、培养学生综合运用知识的能力和数学模型的能力;

3、通过应用题的教学,向学生渗透理论联系实际的观点.

教学重点:灵活运用弧长公式解有关的应用题.

教学难点:建立数学模型.

教学活动设计:

(一)灵活运用弧长公式

例1、填空:

(1)半径为3cm,120°的圆心角所对的弧长是_______cm;

(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;

(3)已知半径为3,则弧长为π的弧所对的圆心角为_______.

(学生独立完成,在弧长公式中l、n、R知二求一.)

答案:(1)2π;(2)24;(3)60°.

说明:使学生灵活运用公式,为综合题目作准备.

练习:P196练习第1题

(二)综合应用题

例2、如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转.

教师引导学生建立数学模型:

分析:(1)皮带长包括哪几部分(+DC++AB);

(2)“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?

(3)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等.)

(4)如何求每一部分的长?

这里给学生考虑的时间和空间,充分发挥学生的主体作用.

解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E.

∵O1O2=2.1,,,

∴,

∴(m)

∵,∴,

∴的长l1(m).

∵,∴的长(m).

∴皮带长l=l1+l2+2AB=5.62(m).

(2)设大轮每分钟转数为n,则

,(转)

答:皮带长约5.63m,大轮每分钟约转277转.

说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力.

巩固练习:P196练习2、3题.

探究活动

钢管捆扎问题

已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度.

请根据下列特殊情况,找出规律,并加以证明.

提示:设钢管的根数为n,金属带的长度为Ln如图:

当n=2时,L2=(π+2)d.

当n=3时,L3=(π+3)d.

当n=4时,L4=(π+4)d.

当n=5时,L5=(π+5)d.

当n=6时,L6=(π+6)d.

当n=7时,L7=(π+6)d.

当n=8时,L8=(π+7)d.

猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(π+n)d.

证明略.

角的画法相关教学方案


教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是能够根据题目要求画出已知角,教学的难点是类似五角星等基本图形的画法.熟练掌握培养学生的画图能力以及进一步学习平面几何图形画法的基础.

画角的方法一般有两种:用量角器画角或用三角板画角.

1.用量角器画角

画一个角等于已知角,可以利用量角器量出已知角的度数,再画一个等于这个度数的角.

画两个角的和、差,或一个角的几倍、几分之一,可以利用量角器,量出已知角的度数,计算出它们的和、差、几倍、几分之一,再按照结果所得的度数画角.

2.用三角板画角

一特殊角,如30°、45°、60°、90°的角,可以直接利用三角板来画,画其他特殊角,关键在于设法把它写成上述特殊角的和或差,例如,凡是15°的整数倍的角,都可用三角板画出,因为15的角,可以写成60°角与45°角的差,或45°角与30°角的差.但若写成30°角的一半,则仍不能画出,因为只用三角板,不能二等分角.能用三角板画出的,只限于上述各种角及其和、差、倍所成的角.

三、教法建议

1.本节教学,应鼓励学生动手实践.在实践中使学生掌握量角器以及三角尺的用法,并初步探索类似五角星的图形的画法.

2.教材里有画五角星的题目,它的本质是等分周角或者说是将圆周n等分,有了作五角星的基础,就可以告诉学生以上这是一类等分圆周的问题,如果将周角进行n等分,就可以将圆周n等分,连结这n个等分点,就可以得到正多边形.这种举一反三的思路会引导学生深入、广泛地学习知识和应用知识.

3.本节可以选择一些与实际生活紧密结合的问题,在解决应用性问题的过程中,丰富学生的认识,同时将本章的知识贯穿起来,既有利于学生知识结构的完善,也有助于学生的画图能力以及应用意识的培养.

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解画两个角的差,一个角的几倍、几分之一的方法.

2.掌握用量角器画两个角的和差,一个角的几倍、几分之一的画法.用三角板画一些特殊.

(二)能力训练点

通过画角的和、差、倍、分,三角板和量角器的使用,培养学生动手能力和操作技巧.

(三)德育渗透点

通过利用三角板画特殊角的方法,说明几何知识常用来解决实际问题,进行几何学在生产、生活中起着重要作用的教育,鼓励他们努力学习.

(四)美育渗透点

通过学生动手操作,使学生体会到简单几何图形组合的多样性,领会几何图形美.

二、学法引导

1.教师教法:尝试指导,以学生操作为主.

2.学生学法:在教师的指导下,积极动手参与,认真思考领会归纳.

三、重点·难点·疑点及解决办法

(一)重点

用量角器画角的和、差、倍、分及用三角板画特殊角.

(二)难点

准确使用量角器画一个角的几分之一.

(三)疑点

量角器的正确使用.

(四)解决办法

通过正确指导,规范操作,使学生掌握画法要领,并以练习加以巩固,从而解决重难点及疑点.

四、课时安排

1课时

五、教具学具准备

一副三角板、量角器.

六、师生互动活动设计

1.通过教师设,学生动手及思考创设出情境,引出课题.

2.通过学生尝试解决、教师把握几何语言美的方法,放手由学生自己解决有关.

3.通过提问的形式完成小结.

七、教学步骤

(一)明确目标

使学生会用量角器画角及角的和、差、倍、分,培养学生动手能力和操作能力.

(二)整体感知

通过教师指导,学生动手操作完成对画图能力和操作能力的掌握.图1

(三)教学过程

创设情境,引出课题

教师在黑板上画出(如图1).

师:现有工具量角器和三角板,谁到黑板上画一个角等于呢?请同学们观察他的操作,老师要找同学说明他的画法.

【教法说明】有上节课的基础,学生会先用量角器测量的度数,再画一个度数等于这个度数的角,学生也会叙述其画法.

提出问题:若老师想画的余角、补角呢?

学生会想到画、减去的度数后的角,即为的余角、补角.

师:是否还有别的方法?

这时学生一定会积极思考,立刻回答还有困难.教师抓住时机点明课题:同学们不用着急,今天我们就研究,学习用三角板、量角器画角的和、差、倍、分以及一些特殊角.老师提出的问题你们会解决的.另外,在我们日常生活中应用广泛,希望同学们认真学习.(板书课题……)

[板书]1.7

探究新知

1.画一个角等于已知角

找学生再次叙述方法:用量角器量出已知角的度数,再画一个等于这个度数的角.

操作:略.

注意:量角器使用三要素:对中、重合、读数.

2.用三角板画特殊角

师:请同学们准备好练习本和一副三角板,再找同学说出一副三角板中各角度数.

学生活动:用三角板在练习本上画出直角、角、角、角.

提出问题:你能利用一副三角板画出、的角吗?

学生活动:讨论画、的角的方法,在练习本上画出图形,同桌可相互交换检查,找学生到黑板上画.

【教法说明】有前一节角的和、差的理解和、、,学生对画、的角不会有困难.因此,教师要敢于放手,让学生自己去尝试解决问题的方法,也培养他们的动手操作的能力,但对于画法学生不会叙述得太严密,教师要把关,培养学生几何语言的严密性.

教师根据前面学生所画图形,引导学生写出画法.(以为例,与例题相符.)

图1

画法如图l,①利用三角板,画

②在的外部,再画就是要画的的角.

反馈练习:用三角板画、、的角.

【教法说明】由学生独立完成以上三个角的画图.教师不给任何提示,只要求写出画角的方法,注意观察画法,是否写出了“在角的内部画的角”.区别例题中两角和的画法.

提出问题:由一副三角板可以画出多少度的角?

学生讨论得出可以画出、、、、、、、、、、、的角.

这些角都是的倍数,用三角板也只限画这样的角.由此得出:由量角器画任意角的和、差、倍、分角.

3.画任意两个角的和差及一个角的几倍、几分之一.

问题:如图1,已知、(),如何画出与的和?与的差?

图1

学生活动:讨论画,的方法,并在练习本上根据自己的想法画图.

根据学生的讨论回答,老师归纳以下方法:

(1)用量角器量出、的度数,计算出它们度数的和、差,再用量角器画出等于它们度数和、差的角.

(2)用量角器把移到上,如果本方法.

图1

教师示范,写出两种画法:

画法一:(1)用量角器量得,.

(2)画,就是要画的角如图1.

图2

画法二:(1)用量角器画.

(2)以点为顶点,射为一边,在的外部画.

就是要画的角如图2.

学生活动:叙述用两种方法画的画法.出示例1由学生完成,要求用两种方法,找同学板演.

例1已知,画出它们的余角.

画法一:(1)量得.

图1图2

(2)画,就是所要画的角,见图1.

画法二:利用三角板,以的顶点为顶点,一边为边,画直角,使的另一边在直角的内部,如图2,就是所要画的角.

【教法说明】第二种画法学生可能叙述或书写不太完整,教师要注意其严密性.

反馈练习

1.已知,画出它的补角.

2.已知,画它们的角平分线.

3.画的角,并把它分成三等份.

【教法说明】本练习只要求图形正确即可,不要求写出画法.

(四)总结、扩展

以提问的形式归纳出以下知识脉络:

八、布置作业

课本第46页习题1.5A组第2、3题.

图1

作业答案

2.角:

3.角:即为所画角,见图1.

九、板书设计

1.7

1.画一个角等于已知角

画法__________________

______________________

______________________

_____________

2.用三角板画特殊角用三角板画

3.画任意两个角的和、差及一个角的几倍、几分之一

如图已知、画,

画法一:_______________

____________________

画法二:_______________

____________________

例1已知画出它的余角

画法一:_______________

_____________________

画法二:_____________

_____________________

热门文章青少年思想道德建设

当前我国作文教学改革的新趋势

古诗三首(墨梅竹石石灰吟)

第一场雪

Unit2Lookatme第五课时

植物妈妈有办法

威尼斯的小艇

等比数列的前n项和

相关文章·角的度量

·角的比较

·角

·线段的比较与画法

·下学期射线、线段

·直线

·一元一次方程的应用

·一元一次方程和它的解法

直线圆的位置关系相关教学方案


1.知识结构

2.重点、难点分析

重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

教学目标:

1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

2、通过的探究,向学生渗透分类、数形结合的思想,培养学生

观察、分析和概括的能力;

3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

教学重点:的判定方法和性质.

教学难点:直线和圆的三种位置关系的研究及运用.

教学设计:

(一)基本概念

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

3、概念:(指导学生完成)

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

(3)相离:直线和圆没有公共点时,叫做直线和圆相离.

研究与理解:

①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

(二)直线与圆的位置关系的数量特征

1、迁移:点与圆的位置关系

(1)点P在⊙O内d

(2)点P在⊙O上d=r;

(3)点P在⊙O外d>r.

2、归纳概括:

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

(1)直线l和⊙O相交d

(2)直线l和⊙O相切d=r;

(3)直线l和⊙O相离d>r.

(三)应用

例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

(1)r=2cm;(2)r=2.4cm;(3)r=3cm.

学生自主完成,老师指导学生规范解题过程.

解:(图形略)过C点作CD⊥AB于D,

在Rt△ABC中,∠C=90°,

AB=,

∵,∴AB·CD=AC·BC,

∴(cm),

(1)当r=2cm时CD>r,∴圆C与AB相离;

(2)当r=2.4cm时,CD=r,∴圆C与AB相切;

(3)当r=3cm时,CD<r,∴圆C与AB相交.

练习P105,1、2.

(四)小结:

1、知识:(指导学生归纳)

2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

(五)作业:教材P115,1(1)、2、3.

探究活动

问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

略解:由正三角形的边长为6厘米,可得它一边上的高为9厘米.

①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即

直线与圆的位置关系相关教学方案


《直线和圆的位置关系》的教学设计

太平溪九四中学何风光

一、素质教育目标

㈠知识教学点

⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

㈡能力训练点

垂直于弦的直径


第一课时(一)

教学目标:

(1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;

(2)进一步培养学生观察问题、分析问题和解决问题的能力;

(3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.

教学重点、难点:

重点:①垂径定理及应用;②从感性到理性的学习能力.

难点:垂径定理的证明.

教学学习活动设计:

(一)实验活动,提出问题:

1、实验:让学生用自己的方法探究圆的对称性,教师引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.

2、提出问题:老师引导学生观察、分析、发现和提出问题.

通过“演示实验——观察——感性——理性”引出垂径定理.

(二)垂径定理及证明:

已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.

求证:AE=EB,=,=.

证明:连结OA、OB,则OA=OB.又∵CD⊥AB,∴直线CD是等腰△OAB的对称轴,又是⊙O的对称轴.所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,、分别和、重合.因此,AE=BE,=,=.从而得到圆的一条重要性质.

垂径定理:平分这条弦,并且平分弦所对的两条弧.

组织学生剖析垂径定理的条件和结论:

CD为⊙O的直径,CD⊥ABAE=EB,=,=.

为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.加深对定理的理解,突出重点,分散难点,避免学生记混.

(三)应用和训练

例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.

分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,而AE=EB=AB=4cm.此时解Rt△AOE即可.

解:连结OA,作OE⊥AB于E.

则AE=EB.

∵AB=8cm,∴AE=4cm.

又∵OE=3cm,

在Rt△AOE中,

(cm).

∴⊙O的半径为5cm.

说明:①学生独立完成,老师指导解题步骤;②应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

关系:r=h+d;r2=d2+(a/2)2

例2、已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证AC=BD.(证明略)

说明:此题为基础题目,对各个层次的学生都要求独立完成.

练习1:教材P78中练习1,2两道题.由学生分析思路,学生之间展开评价、交流.

指导学生归纳:①构造垂径定理的基本图形,垂径定理和勾股定理的结合是计算弦长、半径、弦心距等问题的常用方法;②在圆中解决弦的有关问题经常作的辅助线——弦心距.

(四)小节与反思

教师组织学生进行:

知识:(1)圆的轴对称性;(2)垂径定理及应用.

方法:(1)垂径定理和勾股定理有机结合计算弦长、半径、弦心距等问题的方法,构造直角三角形;(2)在因中解决与弦有关问题经常作的辅助线——弦心距;(3)为了更好理解垂径定理,一条直线只要满足①过圆心;②垂直于弦;则可得③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.

(五)作业

教材P84中11、12、13.

第二课时(二)

教学目标:

(1)使学生掌握垂径定理的两个推论及其简单的应用;

(2)通过对推论的探讨,逐步培养学生观察、比较、分析、发现问题,概括问题的能力.促进学生创造思维水平的发展和提高

(3)渗透一般到特殊,特殊到一般的辩证关系.

教学重点、难点:

重点:①垂径定理的两个推论;②对推论的探究方法.

难点:垂径定理的推论1.

学习活动设计:

(一)分解定理(对定理的剖析)

1、复习提问:定理:平分这条弦,并且平分弦所对应的两条弧.

2、剖析:

(教师指导)

(二)新组合,发现新问题:(A层学生自己组合,小组交流,B层学生老师引导)

,,……(包括原定理,一共有10种)

(三)探究新问题,归纳新结论:

(1)平分弦(不是直径)的直径垂直于弦,并且平分弦对应的两条弧.

(2)弦的垂直平分线经过圆心,并且平分弦对应的两条弧.

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

(4)圆的两条平行线所夹的弧相等.

(四)巩固练习:

练习1、“平分弦的直径垂直于弦,并且平分弦所对的两条弧”这句话对吗?为什么?

(在推论1(1)中,为什么要附加“不是直径”这一条件.)

练习2、按图填空:在⊙O中,

(1)若MN⊥AB,MN为直径,则________,________,________;

(2)若AC=BC,MN为直径,AB不是直径,则则________,________,________;

(3)若MN⊥AB,AC=BC,则________,________,________;

(4)若=,MN为直径,则________,________,________.

(此题目的:巩固定理和推论)

(五)应用、反思

例、四等分.

(A层学生自主完成,对于其他层次的学生在老师指导下完成)

教材P80中的第3题图,是典型的错误作.

此题目的:是引导学生应用定理及推论来平分弧的方法,通过学生自主操作培养学生的动手能力;通过与教材P80中的第3题图的对比,加深学生对感性知识的认识及理性知识的理解.培养学生的思维能力.

(六)小结:

知识:垂径定理的两个推论.

能力:①推论的研究方法;②平分弧的作图.

(七)作业:教材P84中14题.

第三课时垂径定理及推论在解题中的应用

教学目的:

⑴要求学生掌握垂径定理及其推论,会解决有关的证明,计算问题.

⑵培养学生严谨的逻辑推理能力;提高学生方程思想、分类讨论思想的应用意识.

⑶通过例4(赵州桥)对学生进行爱国主义的教育;并向学生渗透数学来源于实践,又反过来服务于实践的辩证唯物主义思想

教学重点:垂径定理及其推论在解题中的应用

教学难点:如何进行辅助线的添加

教学内容:

(一)复习

1.垂径定理及其推论1:对于一条直线和一个圆来说,具备下列五个条件中的任何个,那么也具有其他三个:⑴直线过圆心;⑵垂直于弦;⑶平分弦;⑷平分弦所对的优弧;⑸平分弦所对的劣弧.可简记为:“知2推3”

推论2:圆的两条平行弦所夹的弧相等.

2.应用垂径定理及其推论计算(这里不管什么层次的学生都要自主研究)

涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

关系:r=h+d;r2=d2+(a/2)2

3.常添加的辅助线:(学生归纳)

⑴作弦心距;⑵作半径.------构造直角三角形

4.可用于证明:线段相等、弧相等、角相等、垂直关系;同时为圆中的计算、作图提供依据.

(二)应用例题:(让学生分析,交流,解答,老师引导学生归纳)

例1、1300多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧中点到弦的距离,也叫弓形的高)为7.2米,求桥拱的半径(精确到0.1米).

说明:①对学生进行爱国主义的教育;②应用题的解题思路:实际问题——(转化,构造直角三角形)——数学问题.

例2、已知:⊙O的半径为5,弦AB∥CD,AB=6,CD=8.求:AB与CD间的距离.(让学生画图)

解:分两种情况:

(1)当弦AB、CD在圆心O的两侧

过点O作EF⊥AB于E,连结OA、OC,

又∵AB∥CD,∴EF⊥CD.(作辅助线是难点,学生往往作OE⊥AB,OF⊥AB,就得EF=OE+OF,错误的结论)

由EF过圆心O,EF⊥AB,AB=6,得AE=3,

在Rt△OEA中,由勾股定理,得

,∴

同理可得:OF=3

∴EF=OE+OF=4+3=7.

(2)当弦AB、CD在圆心O的同侧

同(1)的方法可得:OE=4,OF=3.

∴.

说明:①此题主要是渗透分类思想,培养学生的严密性思维和解题方法:确定图形——分析图形——数形结合——解决问题;②培养学生作辅助线的方法和能力.

例3、已知:如图,AB是⊙O的弦,半径OC∥AB,AB=24,OC=15.求:BC的长.

解:(略,过O作OE⊥AE于E,过B作BF⊥OC于F,连结OB.BC=)

说明:通过添加辅助线,构造直角三角形,并把已知与所求线段之间找到关系.

(三)应用训练:

P8l中1题.

在直径为650mm的圆柱形油槽内装入一些油后.截面如图所示,若油面宽AB=600mm,求油的最大深度.

学生分析,教师适当点拨.

分析:要求油的最大深度,就是求有油弓形的高,弓形的高是半径与圆心O到弦的距离差,从而不难看出它与半径和弦的一半可以构造直角三角形,然后利用垂径定理和勾股定理来解决.

(四)小结:

1.垂径定理及其推论的应用注意指明条件.

2.应用定理可以证明的问题;注重构造思想,方程思想、分类思想在解题中的应用.

(五)作业:教材P84中15、16题,P85中B组2、3题.

探究活动

如图,直线MN与⊙O交于点A、B,CD是⊙O的直径,CE⊥MN于E,DF⊥MN于F,OH⊥MN于H.

(1)线段AE、BF之间存在怎样的关系?线段CE、OH、DF之间满足怎样的数量关系?并说明理由.

(2)当直线CD的两个端点在MN两侧时,上述关系是否仍能成立?如果不成立,它们之间又有什么关系?并说明理由.

(答案提示:(1)AE=BF,CE+DF=2OH,(2)AE=BF仍然成立,CE+DF=2OH不能成立.CE、DF、OH之间应满足)

经典初中教案垂直于弦的直径


第一课时(一)

教学目标:

(1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;

(2)进一步培养学生观察问题、分析问题和解决问题的能力;

(3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.

教学重点、难点:

重点:①垂径定理及应用;②从感性到理性的学习能力.

难点:垂径定理的证明.

教学学习活动设计:

(一)实验活动,提出问题:

1、实验:让学生用自己的方法探究圆的对称性,教师引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.

2、提出问题:老师引导学生观察、分析、发现和提出问题.

通过“演示实验——观察——感性——理性”引出垂径定理.

(二)垂径定理及证明:

已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.

求证:AE=EB,=,=.

证明:连结OA、OB,则OA=OB.又∵CD⊥AB,∴直线CD是等腰△OAB的对称轴,又是⊙O的对称轴.所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,、分别和、重合.因此,AE=BE,=,=.从而得到圆的一条重要性质.

垂径定理:平分这条弦,并且平分弦所对的两条弧.

组织学生剖析垂径定理的条件和结论:

CD为⊙O的直径,CD⊥ABAE=EB,=,=.

为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.加深对定理的理解,突出重点,分散难点,避免学生记混.

(三)应用和训练

例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.

分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,而AE=EB=AB=4cm.此时解Rt△AOE即可.

解:连结OA,作OE⊥AB于E.

则AE=EB.

∵AB=8cm,∴AE=4cm.

又∵OE=3cm,

在Rt△AOE中,

(cm).

∴⊙O的半径为5cm.

说明:①学生独立完成,老师指导解题步骤;②应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

关系:r=h+d;r2=d2+(a/2)2

例2、已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证AC=BD.(证明略)

说明:此题为基础题目,对各个层次的学生都要求独立完成.

练习1:教材P78中练习1,2两道题.由学生分析思路,学生之间展开评价、交流.

指导学生归纳:①构造垂径定理的基本图形,垂径定理和勾股定理的结合是计算弦长、半径、弦心距等问题的常用方法;②在圆中解决弦的有关问题经常作的辅助线——弦心距.

(四)小节与反思

教师组织学生进行:

知识:(1)圆的轴对称性;(2)垂径定理及应用.

方法:(1)垂径定理和勾股定理有机结合计算弦长、半径、弦心距等问题的方法,构造直角三角形;(2)在因中解决与弦有关问题经常作的辅助线——弦心距;(3)为了更好理解垂径定理,一条直线只要满足①过圆心;②垂直于弦;则可得③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.

(五)作业

教材P84中11、12、13.

第123页

本文网址:http://m.jk251.com/jiaoan/11090.html

相关文章
最新更新

热门标签