导航栏

×
范文大全 > 高中教案

程序算法的正确性效率 精选版

高中教师在上课之前最好是准备一份教案,教案在我们的教学生活当中十分常见,好的教案能更好地提高中学生的学习能力,怎样才能写好高中教案?这篇《程序算法的正确性效率 精选版》应该可以帮助到您。

1、算法的正确性判定

研究计算机算法的目的是为了有效地求出问题的解,用计算机语言描述的算法要在计算机上运行,这引出了对算法效率的分析和讨论。例如在象棋比赛中,对任意给出的一种棋局,可以设计一种算法判断这一棋局的输赢,算法需要从开局起对所有棋子可能进行的移动、移动前后的每一对策作检查,做出应走的棋步。计算步骤是有穷的,但在计算机上运算这一算法需要很长的时间。这就说明计算机只能运行在有穷步内终止的算法。设计出算法后,应证明该算法对所有可能的合法输入都能计算出正确的结果,这一工作称为算法确认。算法确认与描述实现这一算法的手段无关,例如可以用不同计算机语言来实现这一算法。用算法语言描述构成的程序在计算机上运行,也应证明该程序是正确的,这一工作称为程序证明。对程序的测试包括调试和作时空分布图。调试程序是在抽象数据集上执行程序,确定是否会产生错误的结果,如果出现错误,进行修改,再做测试。调试只能指出程序有错误,而不能指出程序不存在错误。程序的正确性证明是计算机科学一个重要的研究领域。作时空分布图是用各种给定的测试数据,去调试已经证明是正确的程序,测定一个算法得出运算结果所用去的时间和空间,给出时空分布图,验证对算法所作的分析是否正确,找出算法最优化的有效逻辑位置,优化算法的效率。

2、算法的最优性

求解一个问题,如果规定了算法所允许的运算类型,则所有可能的算法构成了解决这个问题的一个算法类,判断一个算法是否最优的依据,是该算法的平均性态分析。若在选择的算法类中,如果一个算法比所有的算法执行的基本运算少,此算法应该是最优的。判断一个算法是否最优,并不需要对算法类中的每一个算法逐个进行分析,可以根据这个算法类的特性,确定所需运算次数的下界,在算法类中所有运算次数等于这个下界的算法是最优的,这也说明最优算法不是惟一的。需要做两件工作确定解决一个问题至少需要多少次运算:①设计一个有效率的算法a,分析a并找到一个函数f,使对尺度为n的输入,a最多做f(n)次基本运算;②对某一函数g,证明一个定理,表明对所考虑的算法类中的任何一个算法,存在一个尺度为n的输入,使算法至少要做g(n)次基本运算。若函数f与g相等,则算法a是最优的;若不相等,则可能存在一个更好的算法或更好的下界。

3、分析算法

(1)分析算法的两个主要内容要分析一个算法首先要确定使用哪些算法以及执行这些算法所用的时间。运算可以分为两类,一类是基本运算,包括加、减、乘、除四种基本的整数算术运算以及浮点算术、比较、对变量赋值和过程调用等。这些运算所用的时间不同,但都是花费一个固定量的时间。另一类运算由一些基本运算的任意长序列组成,以两个字符串的比较运算为例,可以看做是一系列字符比较指令运算,而字符比较指令可以使用移位和位比较指令。比较两个字符的运算时间是固定的,是某一个常数值,而比较两个字符串的运算时间值则与字符串的长度相关。其次是确定能反映出算法在各种情况下工作的测试数据集,设计和编制出能够产生最优、最差运算结果的输入数据配置,这些数据配置能够代表可能出现的典型情况。数据配置的设计是创造性的工作,应能最大限度地适应算法,反映算法运行的环境和功能要求。(2)分析算法的两个阶段对一个算法作出分析分为两个阶段,即事前分析和事后测试。事前分析(priorianalysis),求出该算法的一个时间界限函数,用于对计算时间的渐进表示,假定某一算法的计算时间是f(n),其中变量n表示输入或输出量,它可以是两者之和,也可以是它们之一的一种测度,例如数组的维数、图的边数等,f(n)与机器和语言有关。g(n)是在事前分析中确定的某个形式很简单的函数,是独立于机器和语言的函数,例如nm、logn、2n、n!等。给出定义:若存在两个正常数c和n0,对于所有的n≥n0,下式成立|f(n)|≤c|g(n)|记作f(n)=o(g(n))因此,当讲一个算法具有o(g(n))的计算时间时,指的是若该算法用n值不变的同一类数据在某台机器上运行时,所用的时间是小于|g(n)|的一个常数倍,所以g(n)是计算时间f(n)的一个上界函数,f(n)的数量级就是g(n),在确定f(n)的数量级时总是试图求出最小的g(n),使得f(n)=o(g(n))。事后测试(posterioritesting),收集该算法的执行时间和实际占用空间的统计资料,是在对算法进行设计、确认、事前分析、编码和调试后要做的工作,即作时空性能分布图,事后测试的结果与所用机器相关。要确定算法的精确计算时间,必须了解时钟的精确度以及计算机所用操作系统的工作方式。为避免因所用机器不同而出现误差,有两种可以选用的方法:一种方法是增加输入规模,直到得到算法所需的可靠的时间总量;第二种方法是取足够大的算法重复因子r,将该算法执行r次,然后用总的时间去除以r。例如,对于事前分析为o(g(n))时间的算法,选择按输入不断增大其规模的数据集,用这些数据集在计算机上运行算法程序,得出算法所使用的时间,画出这一数量级的时间曲线,并与事前分析所得出的曲线比较。

jK251.COm精选阅读

研究性课题与实习作业--精选版


教学目标

(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

(2)了解线性规化问题的图解法;

(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;

(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.

教学建议

一、重点难点分析

学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学重点是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的教学难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。

二、教法建议

(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率.

(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.

(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.

(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或论文的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.

(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升.

教学设计方案

教学目标

(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;

(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;

(4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.

重点难点

理解二元一次不等式表示平面区域是教学重点。

如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

教学步骤

(一)引入新课

我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?

(二)线性规划问题的教学模型

线性规划研究的是线性目标函数在线性约束条件下取最大值或最小值问题,一般地,线性规划问题的数字模型是

已知其中都是常数,是非负变量,求的最大值或最小值,这里是常量。

前面我们计论了两个变量的线性规划问题,这类问题可以用图解法来求最优解,涉及更多变量的线性规划问题不能用图解法求解。比如线性不等式不能用图形来表示它,那么对四元线性规划问题就不能用图形来求解了,对这样的线性规划问题怎样求解,同学们今后在大学学习中会得到解决。

线性规划在实际中的应用

线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务,常见问题有:

1.物调运问题

例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小?

2.产品安排问题

例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大?

3.下料问题

例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?

4.研究一个例子

下面的问题,能否用线性规划求解?如能,请同学们解出来。

某家具厂有方木料,五合板,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料、五合板,生产每个书橱需要方木料、五合板,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?

A.教师指导同学们逐步解答:

(1)先将已知数据列成下表

(2)设生产书桌x张,生产书橱y张,获利润为z元。

分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。

(3)目标函数

①在第一个问题中,即只生产书桌,则,约束条件为

∴最多生产300张书桌,获利润元

这样安排生产,五合板先用光,方木料只用了,还有没派上用场。

②在第二个问题中,即只生产书橱,则,约束条件是

∴最多生产600张书橱,获利润元

这样安排生产,五合板也全用光,方木料用去了,仍有没派上用场,获利润比只生产书桌多了48000元。

③在第三个问题中,即怎样安排生产,可获利润最大?

,约束条件为

对此,我们用图解法求解,

先作出可行域,如图阴影部分。

时得直线与平行的直线过可行域内的点M(0,600)。因为与平等的过可行域内的点的所有直线中,距原点最远,所以最优解为,即此时

因此,只生产书橱600张可获得最大利润,最大利润是72000元。

B.讨论

为什么会出现只生产书橱,可获最大利润的情形呢?第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板,生产一张书桌却需要五合板,按家具厂五合板的存有量,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为,而生产600张书橱只需要方木料。

这是一个特殊的线性规划问题,再来研究它的解法。

C.改变这个例子的个别条件,再来研究它的解法。

将这个例子中方木料存有量改为,其他条件不变,则

M(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。

论文,并互相交流。

探究活动

如何确定水电站的位置

小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用.已知A,B两村到河边的垂直距离分别为300m和700m,且两村相距500m,问水电站建于何处,送电到两村电线用料最省?

[解]视两村庄为两点A,B,小河为一条直线L,原问题便转化成在直线上找一点P,使P点到A,B两点距离之和为最小的问题.

以L所在直线为轴,轴通过A点建立直角坐标系,如图所示.作A关于轴的对称点,连,与轴交于点P.由平面几何知识得,点P即为所求.据已知条件,A(0,300),(0,-300).过B作轴于点,过A作,于点H.

由,,得B(300,700).于是直线的方程为

所以P点的坐标即为与轴的交点(90,0),即水电站应建在河边两村间且离A村距河边的最近点90m的地方

研究性课题与实习作业:线性规划的实际应用

矛盾的普遍性性及其关系【推荐】


矛盾在唯物辩证法中居于实质和核心的地位。而矛盾的普遍性和特殊性的辩证关系原理,又是关于事物矛盾问题的精髓。它既是科学的认识方法、科学的工作方法,也是我国建设中国特色的社会主义的重要哲学理论依据。

教学目标

情感目标:引导学生在合作学习中体验集体的智慧和力量;帮助学生在探究知识的过程中感悟哲学思维的魅力。

能力目标:增强抽象思维能力、辩证理解问题的能力,增强学习能力、合作能力、交往能力、表达能力等。

知识目标:了解矛盾普遍性和特殊性的含义,知道二者之间的关系,掌握其方法论要求。

教学过程

布置作业:阅读第九课第一框第二目的内容。

教学步骤:

步骤一:教师提出问题,引入课程内容。

问题1:有人说,“解决台湾问题,用和平的方式总会留下矛盾,用武力的方式就不会留下矛盾了。”从哲学的角度看,你认为这种说法有道理吗?请谈谈理由。

由此得出结论:无论采用什么方式、解决什么问题,矛盾总是时时存在的,这说明矛盾具有普遍性。从事物矛盾的存在看,唯物辩证法认为,矛盾存在于一切事物中,即事事有矛盾;矛盾贯穿于每一个事物发展过程的始终,即时时有矛盾,这就是矛盾的普遍性。

问题2:但是我们解决台湾问题的方式有不同,采取这些不同方式的哲学理论原因是什么?

这说明,事物矛盾具有特殊性。世界上的事物虽然都有矛盾,但是每一个事物的具体矛盾又各有各的特点,这里说的就是矛盾的特殊性。因为矛盾具有特殊性,所以要采取不同的方法解决不同的矛盾。

步骤二:设置情境,引入新的话题。

1.教师将课前准备好的几组不同类别的物品分别发给学生小组。(如,水果、蔬菜、文具等)。

2.各小组对这些物品进行比较分析,并设计问题。

问题:

(1)这些物品各自有其特殊性,说明事物的矛盾各有特点。

(2)不同的物品有着同类性质。这是矛盾性质的普遍性,即同类事物中每一个具体的不同事物所共同具有的性质和特点,也就是我们常说的事物的“共性”。

(3)矛盾的普遍性(共性)和矛盾的特殊性(个性)是对立统一关系。任何事物都是同类事物之中的事物,也是与同类其他事物相区别的事物,是共性和个性的统一。

(4)同类事物在不同的范围具有不同的属性,体现了普遍性和特殊性在一定条件下相互转化。

步骤三:用矛盾普遍性(共性)和特殊性(个性)关系原理,分组设计问题并进行分析。

教师可提示,如科学研究的过程、党的工作路线、学校管理中一种规定的制定过程等。

步骤四:引导学生分析矛盾普遍性(共性)和特殊性(个性)关系原理的方法论要求。

学生分析,教师归纳总结。

掌握矛盾的普遍性和特殊性辩证关系的原理,对于我们正确认识事物,学会科学工作的方法,具有重要的意义。矛盾的普遍性和特殊性是相互联结的,不可分割的,所以我们在认识事物的过程中就要将两个方面统一起来。既要从事物的特殊性中概括出事物的普遍性,又要在普遍性的指导下探究事物的特殊性。即遵循从特殊到一般,再由一般到特殊的认识秩序,推动认识不断深化和发展;并掌握一般号召与个别指导相结合的科学的工作方法。

“函数的对称性与周期性的探究”课例分析


教学课例课例设计说明:《函数》是高中数学的重点章节,对函数性质的考察一直是高考的热点。学生在此之前已经对函数的周期性和对称性有了基本的了解,但认识还比较肤浅,缺乏全面、深入的研究。我设计这堂课是为了适应学生的认知需求,也是培养创新意识和应用能力的需要为激发学生的兴趣,用生活实例作为本节课的导入,使学生感觉到数学就在自己身边,运用自己所学的数学知识就能够合理解释生活中的实际问题。本节课运用了“问题解决”的课堂教学模式,通过创设问题情境,让学生在教学活动中独立思考问题和解决问题,增强学生自主学习的意识,锻炼学生解决问题的能力。引导学生选择恰当的研究策略,使研究具有可操作性、合理性、可持续发展性。引导学生合作交流并及时反思,在交流和反思中学生的思维水平不断提高、得以升华。教学反思:在教学中教师的教学观念和对数学素质直接影响到教学的效果。一堂有价值的数学课,来自教师的精心设计,来自同学们的热情参与。本节课充分调动学生学习积极性和主动性,恰当的引入激发学生研究的兴趣,引导学生提出问题,研究问题,解决问题,让学生从感性体验过渡到理性证明。本节课的设计与实施基本能实现教学目标,达到了预期的目的。学生潜能的开发不是一朝一夕可以完成的,它是一项长期而又艰苦的工程,我将在今后的教学研究和教学实践中以我的勤奋好学不断地完善自己,用我的才智和汗水培育出有创新能力的人才。教研组评价:李红老师在学生研究了函数单独性质的基础上,提出《函数的对称性与周期性的探究》,使学生原有的认知结构与新问题产生冲突,激起学生研究问题的欲望。李红老师在课堂上给予学生较大的思考空间,她先让学生自己设计的研究方案,亲自尝试从具体到抽象、从特殊到一般、从感性到理性的研究过程,再组织学生合作交流,扩大研究成果,并及时纠正学生的研究偏差,从学生的研究策略和研究成果来看,李红老师平日的教学是十分到位的。

光的衍射 精选版


教学目标

(一)知识目标

1、知道"几何光学"中所说的光沿直线传播是一种近似.

2、知道光通过狭缝和圆孔的衍射现象.

3、知道观察到明显衍射的条件

(二)能力目标

了解单缝衍射、小孔衍射,并能用相关知识对生活中的有关现象进行解释和分析.

(三)情感目标

1、让学生知道科学研究必须重视理论的指导和实践的勤奋作用;

2、必须有自信心和踏实勤奋的态度;

3、在学习中也要有好品质、好作风.

教学建议

有关的教学建议

应该让学生了解,光的直进,是几何光学的基础,现象并没有完全否定光的直进,而是指出了光的直进的适用范围或者说它的局限性.

课本只要求学生初步了解现象,不做理论讨论,因此与机械波类比和观察实验现象是十分重要的.首先,要结合机械波的衍射,使学生明确光产生衍射的条件.

讲要配合演示实验、要让学生能区分干涉图样与衍射图样的区别.单色光干涉图样条纹等间距,衍射图样中间宽两边窄.

除了演示实验外,要尽可能多地让学生自己动手做实验进行观察.包括节后的小实验2,以及观察小孔衍射(在铝箔或胶片上打出尺寸不同的小孔,以小电珠作光源,距光源1~2米,眼睛靠近小孔观察光通过小孔的衍射花样--彩色圆环).还可让学生通过羽毛、纱巾观看发光的灯丝(对见到的彩色花样可不作解释)等等,以补学生对这一现象的不熟悉和帮助学生理解.

在本节教材中提到泊松亮斑--泊松原以为这下子可以驳倒菲涅尔的波动理论了,事与愿违,菲涅尔和阿拉果接受了泊松的挑战,用实验验证了这个理论结论,实验却成了波动理论极其精彩的实证,菲涅尔为此获得了科学奖金(1819年).这个科学小故事告诉我们,在科学研究上必须重视理论的指导作用和实践的检验作用;作为科研工作者,必须有坚定的自信心和踏实勤奋的工作态度.今天的学习,在掌握知识的同时,也应培养自己这方面的好品质、好作风.

关于演示实验的教学建议

实验,可以将演示和学生实验同时在一节课内完成

单缝衍射仍用激光演示仪.演示时可以再将双缝干涉演示一下,让学生从中对比干涉条纹等间距,衍射条纹中间宽、两边窄,然后让学生用游标下尺观察日光灯通过卡尺两测脚形成的窄缝产生的衍涉条纹.实验中要让学生仔细观察两侧脚间距从大到小逐渐变化.本实验也可用线状白炽灯使缝与灯丝平行,眼睛靠近狭缝可以观察到狭缝两侧的彩色条纹.

教学设计示例

(-)引入新课

一、现象

上节研究了光的干涉现象,说明光具有波动性.衍射现象也是波的主要特征之一,如果我们能通过实验观察到光的明显的衍射现象,那么也就能更充分地说明光具有波动性.

(二)教学过程

所谓现象,是当光在它传播的方向上遇到障碍物或孔(其大小可以与光的波长相比或比光的波长小)时,光绕到障碍物阴影里去的现象.

演示:

下面我们用实验进行观察.

取一个不透光的屏,在它的中间装上一个宽度可以调节的狭缝,用平行的单色光照射,在缝后适当距离处放一个像屏(如图).

我们看到,当缝比较宽时,在像屏上是一条几乎与缝一样宽的亮线,除了这一条光线外,像屏上出现了阴影.这时光可视为是沿直线传播的.接着逐渐缩小缝的宽度,当缝调到很窄(缝宽与光波的波长相当时)在像屏的原阴影区内观察到了明暗相间的条纹.

这实验表明光在其前进的途中遇上大小相当于光的波长的障碍物或孔时,偏离了直线传播方向,即光产生了衍射现象.上述衍射现象是通过单缝形成的,我们称之为光的单缝衍射.

单色光的干涉与衍射都出现明暗相间的条纹,但图案不同.干涉条纹是等间隔的,衍射条纹间隔不等.白光照射单缝时,可以在像屏上得到彩色条纹,它与双缝干涉的彩色条纹也不同,中央一级是又亮又宽的白色条纹,两边是较窄较暗的彩色条纹.

用点光源来照射有较大圆孔AB的屏,在像屏MN上出现一个光亮的圆,

这说明光是沿直线传播的.逐渐缩小孔的直径,可以看到屏上的亮圆也逐渐减小.但是,圆孔缩到很小时,在像屏MN上原阴影区就形成一些明暗相间的圆环,这些圆环达到的范围远远超过了光按直线传播所能照到的范围,这就是光通过小孔产生的衍射现象.

现象进一步证明了光具有波动性,对确定光的波动说的正确性起了重要作用.

关于这个问题,历史上曾有过一段趣事.1818年,当法国物理学家菲汉耳提出光的波动理论时,著名数学家泊松根据菲涅耳的理论推算出:把一个不透光的小的圆盘状物放在光束中,在距这个圆盘一定距离的像屏上,圆盘的阴影中心应当出现一个亮斑.人们从未看过和听说过这种现象,因而认为这是荒谬的,所以泊松兴高采烈地宣称他驳倒了菲涅耳的波动理论,菲涅耳接受了这一挑战,精心研究,“奇迹”终于出现了,实验证明圆盘阴影中心确实有一个亮斑,这就是著名的泊松亮斑.

光沿直线传播只是一个近似的规律:当光的波长比障碍物或孔的尺寸小得多时,可认为光是沿直线传播的,当光的波长与障碍物或孔的尺寸可以相比拟时将产生明显的衍射现象

提问:当光通过小孔或者狭缝时,在后面的光屏上会得到什么样的图案?

学生回答的基础上老师总结.

当缝很大时——直线传播(得到影)

当缝减小时——逐渐会出现小孔成像的现象

继续减小缝的大小——会出现现象.

探究活动

1、用游标卡尺观察现象.

2、考察现象在人们的日常生活中的体现.

人口的迁移 精选版


高中地理(中图版)必修二《人口的移动》

[教学目的]:

使学生能够分析人口的移动因素

[重点难点]:

人口的迁移原因

[讲授过程]:

[探索活动]读图回答问题:

[问题]世界人口的迁出地有哪些?主要迁入地有哪些?

[问题]为什么人口要迁移?经济因素,因为人口是从经济落后地区迁往经济发达地区。

——人口的迁移

人口的迁移:人们出于某种目的,移动到一定距离之外,改变其定居地的行为,即人口移动。

一、人口迁移的空间形式

按人口迁移的范围是否跨越国界可分为国际人口迁移和国内人口迁移

1、国际人口移动

[阅读教材,回答问题]

[问题]在新大陆发现后国际上发生了哪些人口移动?

新大陆发现:

从欧洲→美洲(印第安人的血泪史)

从非洲→美洲(黑人的血泪史)

从中、日、印等国→东南亚、美洲(华工的血泪史)

[问题]二战后国际人口出现了哪些特点:

劳务输出:亚、非、拉发展中国家→北美、西欧、西亚

国际难民:

发展中国家优秀人才移民:移向发达国家

人口迁移流向发生的变化:欧洲(出—入)拉美(入—出)北美、大洋洲(入)

2、国内人口移动:

[阅读教材,回答问题]

[问题]中国历史时期和解放后分别发生了哪些人口的移动?

历史上:

黄河流域——长江、珠江流域

河北、山东——东北(闯关东);河南、山西——甘肃、内蒙、新疆(走西口)

新中国成立后:

支边:东部——西部边远地区

改革开放后:落后地区——发达地区

乡村人口——城市

二、迁移的原因:

分析前面的迁移,赋予很种迁移一个原因

得出迁移的主要原因:

1、经济因素(人口迁移的主要因素):

历史时期的大迁移

现代社会的由落后区迁入经济发达区(图1-2-5)

城市化过程(乡村人口——城市人口)

大型工程项目移民(区域经济开发)三峡移民100万。

2、政治因素:

战争(例)

国家有组织的大规模人口迁移(例)

3、社会文化因素:

民族歧视、文化传统(中国的叶落归根)(例)

4、生态环境因素:

生态环境的差异(逐水草而居)

环境恶化(水土流失、土地荒漠化、自然灾害等)

5、其它因素:

家庭和婚姻

投亲靠友

逃避种族歧视

树立正确的消费观【推荐】


第二框

一、教学要求

1、基本要求

(1)了解几种主要的消费心理

(2)比较几种消费行为的差异

(3)理解理智消费的四大原则

2、发展要求

树立正确的消费观,学做理智的消费者。

二、基础知识

影响消费行为的主要心理及理智消费

1、人们的消费行为受消费心理的影响,主要表现为心理引发的消费,心理引发的消费,心理引发的消费和心理主导的消费等。

2、做一个理智的消费者,应树立正确的消费观,践行正确的原则,要做到;

避免,消费;保护环境,;,艰苦奋斗。

三、思考问题

1、我们一方面主张量入为出,适度消费,而另一方面银行又在到处宣传贷款消费。这二者不是自相矛盾吗?

2、今天,国家正鼓励消费,在这样的背景下,把“勤俭节约,艰苦奋斗”作为一个消费原则提出来,不切合实际吧?谈谈你的看法。

四、深化拓展

正确理解勤俭节约、艰苦奋斗与适度消费的关系。

1、适度消费指居民家庭消费必须与基本国情及家庭收入相适应。量入为出的适度消费包括不抑制消费和不超前消费两层意思。坚持适度消费原则,既要反对脱离国情和家庭收入水平的盲目攀比、超前消费,又要反对人为抑制消费、滞后消费而导致消费不足。

2、勤俭节约、艰苦奋斗是我们提倡的一种精神、并不是某一种具体的消费方式。每个人不管处于何种消费层次,收入多少,都不能丢掉这一精神。随着生产的发展和收入水平的提高,勤俭节约、艰苦奋斗精神所包含的具体内容也不是一成不变的。

3、适度消费反对超前消费而不抑制消费;勤俭节约、艰苦奋斗,反对铺张浪费但不限制消费。因此,勤俭节约、艰苦奋斗与提倡适度消费是完全一致的。

五、巧建结构

六、应用练习

1、据报道:在我国广大的城镇中存在着因房子而负债累累的群体,其实也是名副其实的“房奴”。“房奴”是一个非常沉重的话题,这启示我们住房消费应该()

a勤俭节约,艰苦奋斗

b保护环境,绿色消费

c革新陋习,科学消费

d避免盲从,理性消费

2、某优质大米在我国市场每公斤售价近100元,约为普通大米价格的20倍,但在北京、上海等发达城市其销售状态依然良好。这体现了()

a收入是影响消费的主要因素

b求异心理是影响消费的重要因素

c价格是影响消费的主要因素

d攀比心理是影响消费的重要因素

函数的应用举例--精选版


教学目标

1.能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.

(1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.

(2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.

(3)能处理有关几何问题,增长率的问题,和物理方面的实际问题.

2.通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.

3.通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.

教学建议

教材分析

(1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.

(2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识.

教法建议

(1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.

(2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.

(3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.

教学设计示例

函数初步应用

教学目标

1.能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.

2.通过对实际问题的研究,培养学生分析问题,解决问题的能力

3.通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的兴趣.

教学重点,难点

重点是应用问题的阅读分析和解决.

难点是根据实际问题建立相应的数学模型

教学方法

师生互动式

教学用具

投影仪

教学过程

一.提出问题

数学来自生活,又应用于生活和生产实践.而实际问题中又蕴涵着丰富的数学知识,数学思想与方法.如刚刚学过的函数内容在实际生活中就有着广泛的应用.今天我们就一起来探讨几个应用问题.

问题一:如图,△是边长为2的正三角形,这个三角形在直线的左方被截得图形的面积为,求函数的解析式及定义域.(板书)

(作为应用问题由于学生是初次研究,所以可先选择以数学知识为背景的应用题,让学生研究)

首先由学生自己阅读题目,教师可利用计算机让直线运动起来,观察三角形的变化,由学生提出研究方法.由学生说出由于图形的不同计算方法也不同,应分类讨论.分界点应在,再由另一个学生说出面积的计算方法.

当时,,(采用直接计算的方法)

当时,

.(板书)

(计算第二段时,可以再画一个相应的图形,如图)

综上,有,

此时可以问学生这是什么函数?定义域应怎样计算?让学生明确是分段函数的前提条件下,求出定义域为.(板书)

问题解决后可由教师简单小结一下研究过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题.

下面我们一起看第二个问题

问题二:某工厂制定了从1999年底开始到2005年底期间的生产总值持续增长的两个三年计划,预计生产总值年平均增长率为,则第二个三年计划生产总值与第一个三年计划生产总值相比,增长率为多少?(投影仪打出)

首先让学生搞清增长率的含义是两个三年总产值之间的关系问题,所以问题转化为已知年增长率为,分别求两个三年计划的总产值.

设1999年总产值为,第一步让学生依次说出2000年到2005年的年总产值,它们分别为:

2000年2003年

2001年2004年

2002年2005年(板书)

第二步再让学生分别算出第一个三年总产值和第二个三年总产值

=++

=.

=++

=.(板书)

第三步计算增长率.

.(板书)

计算后教师可以让学生总结一下关于增长率问题的研究应注意的问题.最后教师再指出关于增长率的问题经常构建的数学模型为,其中为基数,为增长率,为时间.所以经常会用到指数函数有关知识加以解决.

总结后再提出最后一个问题

问题三:一商场批发某种商品的进价为每个80元,零售价为每个100元,为了促进销售,拟采用买一个这种商品赠送一个小礼品的办法,试验表明,礼品价格为1元时,销售量可增加10%,且在一定范围内礼品价格每增加1元销售量就可增加10%.设未赠送礼品时的销售量为件.

(1)写出礼品价值为元时,所获利润(元)关于的函数关系式;

(2)请你设计礼品价值,以使商场获得最大利润.(为节省时间,应用题都可以用投影仪打出)

题目出来后要求学生认真读题,找出关键量.再引导学生找出与利润相关的量.包括销售量,每件的利润及礼品价值等.让学生思考后,列出销售量的式子.再找学生说出每件商品的利润的表达式,完成第一问的列式计算.

解:.(板书)

完成第一问后让学生观察解析式的特点,提出如何求这个函数的最大值(此出最值问题是学生比较陌生的,方法也是学生不熟悉的)所以学生遇到思维障碍,教师可适当提示,如可以先具体计算几个值看一看能否发现规律,若看不出规律,能否把具体计算改进一下,再计算中能体现它是最大?也就是让学生意识到应用最大值的概念来解决问题.最终将问题概括为两个不等式的求解即

(2)若使利润最大应满足

同时成立即解得

当或时,有最大值.

由于这是实际应用问题,在答案的选择上应考虑价值为9元的礼品赠送,可获的最大利润.

三.小结

通过以上三个应用问题的研究,要学生了解解决应用问题的具体步骤及相应的注意事项.

四.作业略

五.板书设计

2.9函数初步应用

问题一:

解:

问题二

分析

问题三

分析

小结:

直线的方程 精选版


教学目标

(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出.

(2)理解直线方程几种形式之间的内在联系,能在整体上把握.

(3)掌握直线方程各种形式之间的互化.

(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

教学建议

1.教材分析

(1)知识结构

由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

(2)重点、难点分析

①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出.

解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

2.教法建议

(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.

直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

教学设计示例

直线方程的一般形式

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

(2)理解直线与二元一次方程的关系及其证明

(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点(2,1),斜率为2的,并观察方程属于哪一类,为什么?

答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点,的,并观察方程属于哪一类,为什么?

答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意都是二元一次方程吗?”

(二)本节主体内容教学的设计

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…

思路二:…

……

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式.

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

师生共同讨论,评价不同思路,达成共识:

回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即

(1)当时,方程可化为

这是表示斜率为、在轴上的截距为的直线.

(2)当时,由于、不同时为0,必有,方程可化为

这表示一条与轴垂直的直线.

因此,得到结论:

在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.

为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.

【动画演示】

演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

(三)练习巩固、总结提高、板书和作业等环节的设计在此从略

本文网址:http://m.jk251.com/jiaoan/17301.html

相关文章
最新更新

热门标签