导航栏

×
范文大全 > 教案

参考范文--鸡兔同笼教案范例4篇

教师上课前最好是准备一份教案,编写教案能够提高自己的教学研究能力,写出一份教学方案需要经过精心的准备,教案该怎么写?下面是小编为您精心收集整理,为您带来的《参考范文--鸡兔同笼教案范例4篇》,仅供参考,希望对您有帮助。

鸡兔同笼教案【篇一】

预设:

学生1:列表法能很清晰地解决这个问题。

学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

学生小组交流汇报。

预设:

学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

4.数形结合理解假设法。

教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

(1)假设全是鸡。

教师:我们先看表格中左起的第一列,8和0是什么意思?

8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)

32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)

8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

(3)提出假设法概念。

刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

(板书:假设法)

【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。

(三)知识运用

学生独立完成古代趣题。

【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

(四)全课小结

这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?

鸡兔同笼教案(篇二)

教学内容:

教科书数学六年级上册P112-115。

教学目标:

1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

教学难点:

理解假设法中各步的算理

教具准备:

多媒体课件

教学过程:

一、解读原题,直奔主题。

1、谈话,激情导入

师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

(2)揭示课题

(3)原题解读

师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]

二、合作探究,寻找策略。

1、改变原题

师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

(2) 理解题意:从题中你获得哪些信息?

让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

探索策略

2、列表尝试法

①猜一猜:笼子里可能有几只鸡?几只兔?

②说一说:他猜的对吗?要怎么知道他猜的对不对?

③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

④ 展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。

⑤ 反馈交流

A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

B、取中或跳跃尝试,数一数试了几次?有什么秘诀?

⑥ 小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

[设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

3、假设法

①. 学生独立尝试列式解答

②. 小组讨论,说一说用假设法解答的算理

③. 汇报反馈

④. 课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。

A. 假设笼子里都是鸡,一共有几只脚?

条件告诉我们几只脚,这样就少了几只脚呢?

为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

那么几只兔看成鸡一共少了10只脚呢?

B. 假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

那么几只鸡看成兔一共多了6只脚呢?

⑤. 让学生对照课件说一说算式表示的意义

⑥. 思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

[设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的思维水平,获得了新的数学思想方法。]

4、方程解

解:设兔有 只,则鸡有 只。

也可以设:鸡为 只,则兔有 只。(略)

师:在列方程解答时碰到什么困难?该如何解决?

[设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

5、梳理小结,比较优化。

三、推广应用,建立模型。

1. 选择自己喜欢的方法解决《孙子算经》中的原题。

2. 解决生活中的“鸡兔同笼”的问题。

(1)动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

3. 对比联系,建立模型。

4. 小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

5.让学生举出生活中类似的“鸡兔同笼”问题。

[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

四、引导阅读,课外延伸。

1. 阅读并思考课本114页的“阅读材料”。

2. 完成练习二十六的1—3题。

[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

鸡兔同笼教案【篇三】

教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。

3在解决问题的过程中培养学生的逻辑思维能力。

教学重点:感受古代数学问题的趣味性。

教学难点:用不同的方法解决问题。

教学准备:课件

教学程序:

一激趣导入

师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

师:关于“鸡兔同笼”问题以前你们有过一些了解吗?流传至今有一千五百多年的问题,是什么样呢?想知道吗?

二探索新知

1(课件示:书中112页情境图)

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)

师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。问鸡和兔各有几只?

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2.出示例一(课件示例一)

题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只?

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

师:把你们研究的结果拿来让大家看看。这样按顺序推算,对于数据小的问题解决起来很方便,不过一旦数据比较大,比如笼子里的鸡和兔有100只,200只,甚至更多,再用这样的办法怎么样?

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)

师:我们看这个方程列得是否正确?4X表示什么?2(8-X)表示的是什么?兔脚数+鸡脚数=什么?这就是列这个方程所依据的数量关系。谁能把这个数量关系完整的说一遍?

生:说数量关系。(鸡脚数+兔脚数=26只脚)

师:根据这个数量关系你能想到另两个数量关系吗?

生:叙述另外两个数量关系。(26只脚-鸡脚数=兔脚数26只脚-兔脚数=鸡脚数)根据这两个数量关系你又能列出哪两个方程呢?

生:汇报师板书两方程。

师:除了可以设兔有X只,还可以怎样设?

生:还可以设鸡有X只。那兔就有(8-X)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2X+4(8-X)=26根据26只脚-鸡脚数=兔脚数能列出26-2X=4(8-X)根据26只脚-兔脚数=鸡脚数能列出26-4(8-X)=2X。

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)

生:我们是这样想的。假设笼子里都是鸡,应有脚8×2=16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只鸡就有8-5=3只。(生说师板书计算过程)

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

师解释:刚才我们把笼子里的动物都看做鸡(课件图画上显示)那么笼子里共就应该有多少只脚?

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

师:把笼子里的动物都看做鸡,你们会算了,要是把笼子里的动物都看做兔,(师板书:全看作兔)又该怎样思考呢?你能参照前面的方法自己试着做一做吗?

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

师:同学们看,通过上面的探究学习,我们共找到几种解决鸡兔同笼问题的方法?(三种)哪三种?(列表法,方程法,假设法)你们能说说这三种方法各有什么特点吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

三巩固练习

师:现在就请你来解决那道数据较大的问题你们能解决吗?

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

师:在一千五百年前,我国的古人就发明出这么的数学问题,一直流传到现在,他们还想出那么巧妙地解决办法,为我们后人留下了宝贵的知识财富,你想对他们说点什么吗?

四全课总结

师:通过这节课的学习你有什么收获?

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

鸡兔同笼

列表法

方程法假设法

解:设有兔X只,鸡就有2(8-X)只。全看作鸡

4X+2(8-X)=268×2=16(只)

2X+16=2626-16=10(只)

X=54-2=2(只)

8-5=3(只)10÷2=5(只)

答:有5只兔,3只鸡。8-5=3(只)

26-4X=2(8-X)全看作兔

26-2(8-X)=4X8×4=32(只)

2X+4(8-X)=2632-26=6(只)

26-2X=4(8-X)4-2=2(只)

26-4(8-X)=2X6÷2=3(只)

8-3=5(只)

鸡兔同笼教案(篇四)

【教学目标】

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

【重点难点】

用假设法和列方程的方法解决“鸡兔同笼”问题。

【教学指导】

1.要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。

2.要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

3.要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。

4.要注重数学文化的传承鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,我们把《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。

【知识结构】

第1课时 鸡兔同笼(1)

【教学内容】

教材第103~105页例1及“做一做”、教材第106页练习二十四第1~3题。

【教学目标】

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

【重点难点】

用多种方法解决“鸡兔同笼”问题。

【教学准备】

课件、列表法的表格卡片。

【情景导入】

1.师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)

2.这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。鸡兔同笼问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。你们有没有信心把这节课的内容学好呢?

【新课讲授】

(一)出示情景,获取信息

1.出示“鸡兔同笼”画面。为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”

2.我们一起来看看被关在同一个笼子里的鸡和兔。鸡和兔是两种不同的动物,但我们从数学的角度思考,它们有什么相同点和不同点呢?学生理解:相同点——鸡和兔都只有1个头;不同点——鸡只有2条腿,而兔有4条腿。

(二)列表法

1.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?在猜测时要抓住哪个条件?(鸡和兔一共是8只。)

2.那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜的对不对呢?(把鸡的腿和兔的腿加起来看等不等于26条腿。)

3.现在就请同学们,把你们猜测的数据填在答题卡上。师巡视,可能会出现如下四种情况:① 随意猜,直到猜对为止;② 从鸡的只数开始尝试,直到符合26条腿为止;③ 从兔的只数开始尝试,直到符合26条腿为止;④ 对半分开始尝试,不断调整,直到符合26条腿为止。

4.我们把这种方法叫做列表法。(板书:列表法)

(三)直观画图法

1.师:刚才我们同学介绍了用列表法来解决这个问题,还有别的方法吗?谁愿意来给大家讲一讲?

2.生1:还可以用画图——先画好8个圆圈代表鸡和兔的8个头,再给每只动物先安上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。因为每只兔少算了2条腿,所以一次增加2条腿,这样一只鸡就变成了一只兔,要把10条腿安完,就要把5只鸡变成兔。 所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)问:你们听懂他的方法吗?请同学们在练习本上画一画。

3.生2:我也是用画图法——先画好8个圆圈代表鸡和兔的8个头,但我是先给每只动物安上4条腿(也就是都看成兔。),这样一共有32条腿,多了6条腿。因为每只鸡多画了2条腿,所以一次减少2条腿,这样一只兔就变成了一只鸡,要去掉多的6条腿,就要从3只兔的身上各去掉2条腿,这样3只兔变成了鸡。所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)

师:画图的方法非常便于观察、非常容易理解。

4.你们觉得用猜想列表法或直观画图法解决鸡兔同笼问题怎么样?(

生:我认为有局限性,当头和腿的数目较大时,用这两种方法会很麻烦。)

5.是呀!假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。

(四)思考交流你还能用什么办法来解决这个问题呢?

学生讨论后交流。

A、假设法现在请同学们一起来看看XXX同学表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)

①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿?

②与实际的腿数不符,腿的条数少算了多少条?

③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿?

④少算的10条腿是把多少只兔当成了鸡来算?

⑤鸡的只数怎么算?

B、列方程解在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)

要用列方程的方法就必须找到等量关系式。

通过得到的信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)

这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。

小结:请同学们回忆一下,在解决鸡兔同笼问题时,可以用哪些方法?(列表法、画图法、假设法或列方程。)

(五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗?

【课堂作业】

完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。

【课堂小结】

通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。

【课后作业】

1.完成教材第106页练习二十四第1~3题。

2.完成练习册本课时的练习。

Jk251.com相关文章推荐

数学“鸡兔同笼”问题集体备教案


时间:20xx年12月3日

地点:大会议室

主备人:崔

参加人员:六年级全体数学教师

教研内容:“鸡兔同笼”问题

教学目标:

1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。

2.结合图解法理解假设的方法解决鸡兔同笼问题。

3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

教学重点:能用列表法和画图法解决相关的实际问题。

教学难点:结合图解法理解假设的方法解决鸡兔同笼问题。

重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。

模式方法:提出问题——列举尝试——观察发现——讨论交流——寻找解法。

作业设计:有浅入深“鸡兔同笼”的基本题型多练。

组内教师讨论要点:

1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。

2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。

3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。

4、列方程解时要借助实例,体会设x的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为x的道理,方法是设出一部分,根据总数列出方程(易列难解)

活动总结:

全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。

单元“鸡兔同笼”问题 优秀小学教案 教案精选


教学目标:

1、了解“鸡兔同笼”的问题,感受我国古代数学问题的趣味性,提高学习数学的兴趣。

2、通过自主探索,合作交流,让学生体会代数方法的优越性。

教学重点、难点:

1、重点:尝试用不同的方法解决问题,使学生体会代数方法的优越性。

2、难点:在解决问题时培养学生推理能力。

教学过程:

(–)故事引入。

教师:在我国古代流传着很多有趣的问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几只?(笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?)

师:我们今天就来学习——“鸡兔同笼”的问题。要解决这个问题,我们先从简单的问题入手。

(二)新授课程。

1、教学例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?

让学生以两人为一小组讨论。

汇报讨论的结果。

(1)列表:

鸡876543

兔012345

脚161820222426

(2)假设法:假设笼子里都是鸡,那么就有8×2=16只脚,这样就比题目多26-16=10(只)脚。

因为刚才是把兔子当成鸡,一只兔子少算两只,那么多出的10只脚就是兔子的只数10÷2=5(只)兔子

因此,鸡就有8-5=3(只)

(3)用方程解:

解;设鸡有x只,兔有(8-x)只。

根据鸡兔共有26只脚来列方程式

2x+(8-x)×4=26

2x+8×4x=26

32x-26=4x-2x

2x=6

x=3

8-3=5(只)

2,小结解题方法:

3,延伸与应用:

师:其实生活中有许多类似“鸡兔同笼”的问题,下面分

组研究这样一个问题:我们六年级38名少先队员划船活动,租了8条船,每条船都坐满人,大船能乘6人,小船能乘4人。这次活动租大船、小船个几条?(“做一做第2题”)

(学生分组或独立完成后汇报交流)

师:经过大家的一番努力,这个“租船”问题转化成了一道‘‘鸡兔同笼”问题。

4,畅谈收获,全课结束。

师:今天的学习有趣吗?大家有哪些收获?

师:希望你们能用今天学到的方法去解决更多实际生活中的数学问题。

本文网址:http://m.jk251.com/jiaoan/20413.html

相关文章
最新更新

热门标签