导航栏

×
范文大全 > 初中教案

2.4 用尺规作角_教案模板

时间:2022-01-16 角的比较 课后延时服务总结模板

教学目的:

1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.

2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角.

教学重点:

能按作图语言来完成作图动作,能用尺规作一个角等于已知角.

教学难点:

作图步骤和作图语言的叙述,及作角的综合应用.

教学过程:

一、问题的提出:

如图,要在长方形木板上截一个平行四边形,

使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为ab.

(1)请过点c画出与ab平行的另一条边

(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?

二、.新课:(师生一起,边讲边练)

内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹哦!)

(一)用尺规作一个角等于已知角.

(1)已知:∠aob,

求作:∠a´o´b´,使∠a´o´b´=∠aob.

(2)已知:∠,

求作:∠aob,使∠aob=∠.

(二)用尺规作一个角等于已知角的倍数:

(3)已知:∠1,

求作:∠mon,使∠mon=2∠1;∠cod,使∠cod=3∠1.

(三)用尺规作一个角等于已知角的和:

(4)已知:∠1、∠2、∠3.

求作:①∠aob,使∠aob=∠1+∠2;

②∠poq,使∠poq=∠1+∠2+∠3;

③∠mon,使∠mon=2∠1+∠2.

(四)用尺规作一个角等于已知角的差:

已知:∠α、∠β、∠γ.

求作:①∠aob,使∠aob=∠α-∠β;JK251.com

②∠poq,使∠poq=∠α-∠β-∠γ;

③求作一个角,使它等于2∠β-∠γ.

(五)综合练习:(通过以下练习,意味着你掌握了作角的真本领,多动一下脑筋,你一定会完成得很出色的!)k

(1)已知:线段ab、∠α、∠β.

求作:分别过点a、点b作∠cab=∠α、∠cba=∠β.

(2)如图,点p为∠abc的边ab上的一点,过点p作直线ef//bc.

(3)已知:直线l和l外一点p,

求作:一条直线,使它经过点p,并与已知直线l平行.

(4)已知:△abc,

求作:直线mn,使mn经过点a,且mn//bc.

(5)如图,以点b为顶点,射线ba为一边,在∠abc外再作一个角,使其等于∠abc.

三、小结:

今天我们学习了用尺规作一个角等于已知角,它是一个基本的作图方法.

四、作业:第68页习题1(1)(2)

Jk251.coM编辑推荐

5.6 作三角形(范文)


教学目标:

1、在分别给出的两角夹边、两边夹角和三边的条件下,能够利用尺规作三角形.

2、能结合三角形全等的条件与同伴交流作图过程和结果的合理性.

教学重点:1、根据题目的条件作三角形.

教学难点:探索作图过程.

教学工具:圆规、直尺

准备活动:

(1)计算已知线段a,求作线段ab,使得ab=a.

(2)已知:∠α,求作:∠aob,使∠aob=∠α.

(3)已知:m为∠aob边上的一点,如图所示,过m作直线cd,使得cd//oa.

教学过程:

内容一:(根据简单图形书写作法)

(1)如图,使用直尺作图,看图填空.

①②③④

①过点____和_______作直线ab;

②连结线段___________;

③以点_______为端点,过点_______作射线___________;

④延长线段__________到_________,使得bc=2ab.

(2)如图,使用圆规作图,看图填空:

①在射线am上__________线段________=___________.

②以点______为圆心,以线段______为半径作弧交_________于点___________.

以点______为圆心,以任意长为半径作弧,分别交∠aob两边,交_________于点___________,交________于点__________.

这部分内容是为让学生熟悉作法的语言表达而设的.教师应该让学生慢慢理解这种语言表达的意思.逐步学会自己口述表达自己的作图过程.

内容二(作一个三角形与已知三角形全等)

1、已知三角形的两边及其夹角,求作这个三角形.

已知:线段a,c,∠α.

求作:δabc,使得bc=a,ab=c,∠abc=∠α.

作法与过程:

(1)作一条线段bc=a,

(2)以b为顶点,bc为一边,作角∠dbc=∠a;

(3)在射线bd上截取线段ba=c;

(4)连接ac,δabc就是所求作的三角形.

给出示范和作法,让学生模仿,教师可以在黑板上做一次示范,让学生跟着一起操作,并在画完图后,让学生再自己操作一遍.而在下面的作图中,就让学生小组内讨论、交流,通过集体的力量完成,教师再给以一定的指导.

2、已知三角形的两角及其夹边,求作这个三角形.

已知:线段∠α,∠β,线段c.

求作:δabc,使得∠a=∠α,∠b=∠β,ab=c.

作法:(1)作____________=∠α;

(2)在射线______上截取线段_________=c;

(3)以______为顶点,以_________为一边,作∠______=∠β,________交_______于点_______.δabc就是所求作的三角形.

先让学生独立思考,探索作图的过程,对可以自己作出图形的学生,要求他们在小组内交流,用自己的语言表述作图过程.教师要注意提醒学生在作图过程中,是以哪个点为圆心,什么长度为半径作图.

3、已知三角形的三边,求作这个三角形.

已知:线段a,b,c.

求作:δabc,使得ab=c,ac=b,bc=a.

在完成三个作图后,要鼓励学生比较各自所作的三角形,利用重合等直观的方法观察所作的三角形是否全等.在此机会上,引导学生利用已经获得的三角形全等的条件来说明大家所作的三角形一定是全等的,即说明作法的合理性.

小结:

能根据题目给出的条件作出三角形.能口述作图过程.

作业:卷子中的巩固练习.

教学后记:

本节课的内容比较多,学生对作图的步骤有混淆的情况发生,学生对于自己探索”已知三角形三边作三角形”的作图过程存在一定的难度.

用自己的语言表达作图过程也是不大理想.有待练习巩固.

角的平分线教案模板


知识结构

重点与难点分析:

本节内容的重点是角平分线的性质定理,逆定理及它们的应用。性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。

本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。对于原命题和逆命题,学生对条件和结论容易混淆,特别是没有明显的提示语言时,更易找不准条件和结论,这就成了教学的难点。

教法建议:

整堂课围绕“以复习为基础,以过程为主线,以思维为中心,以训练为手段”开展教学。注重学生的参与度,通过提问、板演、讨论等多种形式,让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)做好铺垫

新课引入前,作一个具体画图的练习:已知角画出它的角平分线;然后在平分线上任取一点,作出这一点到角两边的距离。这样做一是复习了角平分线的定义和点到直线距离的定义;二是为本节课的学习奠定了图形基础。

(2)主动获取

利用上面的图形,观察这两个距离的关系,并证明自己的结论。对基础条件比较好的同学会很容易得出结论并能用文字叙述出来。对基础稍差一些的同学生得出结论并不难但让他们用文字叙述出来可能不是很准确,此时教师要做指导。这一环节的教学注意让学生通过观察、分析、推理等活动,主动提出此定理。

(3)激荡思维

在上面定理的基础上,让学找出此定理的条件与结论,并交换条件与结论得到一个新的命题,然后验证此命题的正确性如何?学生通过推理证明不难得到是一个真命题。此时顺理成章地引出教材中的定理2。最后注意强调:两个定理的区别与联系;原命题与逆命题、原定理与逆定理的关系及写出一个命题的逆命题的方法步骤。这一环节完全是由学生给出定理的文字表述及证明过程。

(4)推向深入

进行必要的例题讲解,然后进行有层次阶梯性训练,以达到熟练地运用定理证明有关问题。教学时,要注意引导学生分析问题解决问题的思考方法。同时让学生总结积累证明线段相等、角相等的常见方法。

教学目标:

1、知识目标:

(1)掌握角平分线的性质定理和逆定理;

(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;

(3)能够判定两个命题是否为互逆命题,并能写出一个命题的逆命题.

2、能力目标:

(1)通过“判断题”的练习,提高学生的辨析能力;

(2)通过公理的初步应用,培养学生的逻辑推理能力及创新的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征。

教学重点:角平分线的性质定理,逆定理及它们的应用。

教学难点:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。。

教学用具:直尺,微机

教学方法:谈话法

教学过程:

1、新课引入

投影显示

问题:(1)画一个;

(2)在这条平分线上任取一点P,标出P点到角两边的距离。

(3)说出这两段距离的关系并证明。

2、定理的获得

让学生用文字语言叙述出定理的内容

角平分线的性质定理:在角平分线上的点到这个角两边距离相等。

强调说明:

(1)、定理的条件及结论的符号表示;

(2)、定理的作用:直接证明两线段相等。使用的前提是有,关键是图中是否有“垂直”。

3、运用逆向思维,导出定理的逆定理

问题:将定理的条件与结论“换位”得到一个新命题,说出这个新命题的内容,并判断命题是真命题还是假命题?学生分析、讨论用文字叙述内容,老师作必要的提示。

逆定理:到一个角的两边距离相等的点,在这个上。

强调:a逆定理的作用:证明角相等

b、二定理的区别与联系:性质定理说明了角平分线上点的纯粹性,即:只要是角平分线上的点,它到此角两边一定等距离,而无一例外;判定定理反映了角平分线的完备性,即只要是到角两边距离相等的点,都一定在角平分线上,而绝不会漏掉一个。实际应用中,前者用来证明线段相等,后者用来证明角相等(角平分线)

4、原命题与逆命题

a、概念

b、写出互逆命题的关键。

c、原使命与逆使命的真假性并无一定的依存关系。

5、定理的应用(投影四个例题)

第12页

全等三角形教案模板


一.说教材

全等三角形是八年级上册数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,也是进一步学习其它图形的基础之一。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:

(一)、教学目标:

1、知道什么是全等形,全等三角形以及全等三角形对应的元素;

2、能用符号正确地表示两个三角形全等;

3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;

4、知道全等三角形的性质,并能用其解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;

5、通过感受全等三角形的对应美,培养学生热爱科学、勇于创新的精神和多方位审视问题的能力与技巧。

(二)、说教学重点、难点

重点:全等三角形的概念、性质

难点:找对应顶点、对应边和对应角

二、说教法

1、引导发现法

在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。

2、谈话法

在师生对话、问答的过程中,用谈话的方式引导学生积极思考、探索,从而使学生在师生之间的交流、同学之间的交流中获得知识。

三、说学法

1、通过接触身边环境中的数学信息,激发学生的学习兴趣,产生自觉学习的内在动机,引导学生踏上自主学习之路。

2、看听结合,形成表象。

3、手脑结合,自主探究。

四、教学流程设计

1、情景导入

课前展示背景为悉尼歌剧院的倒影的图片(目的引起学生们的兴趣:全等三角形和歌剧院有什么联系?)

展示我国某地一幅风景图片,通过学生对湖光山色的描绘(描绘的倒影是景致之一),使学生的思维很快处于兴奋状态,这样,引导学生积极思维,让学生们认识到全等图形就在我们身边,以利于培养学生的探索性思维能力,激发学生的求知欲。

2、探求新知

展示国旗和福娃的等图片,提出问题(同时使学生感知,我们的祖国在体育、经济等诸多方面都已跻身与世界强国之列,为自己是一个中国人而感到自豪、骄傲)

3、通过观察图形变换让学生感受完全重合的图形有很多,从而得出全等形的概念。

4、通过演示让学生体会出全等三角形的概念和对应顶点、对应边、对应角的概念以及全等三角形的性质,并以图形变换的形式在练习指出对应顶点、对应边、对应角,由此去理解“对应顶点写在对应的位置上”的含义。

5、通过学生对全等三角形的观察,合作交流,从而得出找全等三角形的对应边、对应角的方法。

6、小结提高

通过今天的学习,同学们有哪些收获?(由学生自我完成知识的体系,纳入已有的知识体系,逐步形成解决问题的技能和思想)

7、拓展与延伸(合作交流完成探究题)

8、板书设计

13.1全等三角形

1、全等三角形的概念

2、△abc≌△def

3、对应顶点、对应边.、对应角

4、全等三角形的性质

5、找对应元素的方法

20xx年10月18日

认识三角形_教案模板


教学目标:

1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;

2、了解三角形的高,并能在具体的三角形中作出它们.

教学重点:

在具体的三角形中作出三角形的高.

教学难点:

画出钝角三角形的三条高.

活动准备:

学生预先剪好三种三角形,一副三角板.

教学过程:

过三角形的一个顶点a,你能画出它的对边bc的垂线吗?试试看,你准行!

从而引出新课:

1、★三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.

如图,线段am是bc边上的高.

∵am是bc边上的高,

∴am⊥bc.

做一做:每人准备一个锐角三角形纸片:

(1)你能画出这个三角形的高吗?

你能用折纸的方法得到它吗?

(2)这三条高之间有怎样的位置关系呢?

小组讨论交流.

结论:锐角三角形的三条高在三角形的内部且交于一点.

3、议一议:

每人画出一个直角三角形和一个钝角三角形.

(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?

(2)你能折出钝角三角形的三条高吗?

你能画出它们吗?

(3)钝角三角形的三条高交于一点吗?

它们所在的直线交于一点吗?

小组讨论交流.

结论:

1、直角三角形的三条高交于直角顶点处.

2、钝角三角形的三条高所在直线交于一点,此点在三角形的外部.

4、练习:

如图,(1)共有___________个直角三角形;

(2)高ad、be、cf相对应的底分别是_______,_____,____;

(3)ad=3,bc=6,ab=5,be=4.

则s△abc=___________,cf=_________,ac=_____________.

5、小结:

(1)锐角三角形的三条高在三角形的内部且交于一点.

(2)直角三角形的三条高交于直角顶点处.

(3)钝角三角形的三条高所在直线交于一点,此点在三角形的外部.

作业:p1271、2、3

教后记:

锐角三角形和直角三角形的高掌握得较好.

钝角三角形的高,特别是钝角边上的两条高较差.

数学教案-角


教学建议

一、知识结构

二、重点、难点分析

角的定义既是本节教学的重点,也是难点.本节知识建立在射线、线段等相关知识的基础上,同时也是进一步学习角的度量、比较、画法,以及深入研究平面几何图形的基础.

1.角的定义是由实际生活中具有角的形象的物体抽象出来的,理解角的定义一定要明确角的边为射线,角为平面内的点集.角也可认为是一条射线绕它的端点从一个位置旋转到另一个位置而形成的图形,这里的线动成角体现了运动变化的思想.

2.角的表示法,小学没有介绍,这里首先说明用三个字母记角.对此,要特别强调表示顶点的字母一定要写在中间,唯有在顶点处只有一个角的情况,才可只用顶点一个字母来记这个角,否则分不清这个字母究竟表示哪一个角.在讲往数字或希腊字母来记角时,可再让学生作些练习,说出所记的角怎样用三个字母来表示.

三、教法建议

1.本节教学可以在简单复习直线、射线、线段的基础上引入,将问题的研究方向转向这些最基本的几何图形与点结合以及互相结合能够组成什么图形.可以尝试让同学们摆火柴,重点应在具有角的形象的图形,然后可以在列举、观察、分析学习、生活、生产中同样具有角的形象的物体的基础上,让同学们尝试给出角的定义.

2.关于角的另一种定义,也可以通过实物演示的方式得出,冽如一手扯住线的一端,另一手拉住线的另一端旋转.重点应是对运动变化的观点的渗透.平角和周角也可以让学生给出,真正理解“平”与“直”的含义.

3.教学过程中可以给出一些判别给定图形是不是角的练习,帮助学生理解角的相关概念.同时将角的知识与学生的生活实践紧密的结合起来.可以充分发挥多媒体教学的优势,结合图片、动画、课件辅助教学.

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解角、周角、平角及角的顶点、角的边等概念.

2.掌握角的表示方法.

(二)能力训练点

1.通过由学生观察实物图形抽象出角的定义,培养学生的抽象概括能力.通过学生独立阅读总结角的几种表示方法,培养学生的阅读理解能力.

2.通过角的两个定义的得出,培养学生多角度分析考虑问题的能力.

(三)德育渗透点

1.通过日常生活中具体的角的形象概括出角的定义,说明几何来源于生活,又反过来为生产、生活服务.鼓励学生努力学好文化知识,为社会做贡献.

2.通过旋转观点定义角,说明事物是不断变化和相互转化的,我们不能用一成不变的观点去看待某些事物.

(四)美育渗透点

通过学习角使学生体会几何图形的对称美和动态美,培养学生的审美意识,提高学生对几何的学习兴趣.

二、学法引导

1.教师教法:引导发现,尝试指导与阅读理解相结合.

2.学生学法:主动发现,自我理解与阅读法相结合.

三、重点难点疑点及解决办法

(一)重点

角的概念及角的表示方法.

(二)难点

周角、平角概念的理解.

(三)疑点

平角与直线、周角与射线的区别.

(四)解决办法

通过演示法使学生正确理解平角、周角的概念,适当加以解释,简明扼要,条理清楚即可,不必做过多的解释.

四、课时安排

1课时

五、教具学具准备

投影仪(电脑、实物投影)、三角板、圆规、自制胶片.

六、师生互动活动设计

1.教师创设情境,学生进入.

2.教师步步设问,提出问题,学生在回答问题、自己画图、观察图形的过程中掌握角的静态定义.

3.教师指导,学生阅读、归纳四种表示角的方法.

4.教师用电脑直观演示展示角的旋转定义.

5.反馈练习.

6.师生讨论总结.

7.测试.

七、教学步骤

(一)明确目标

使学生能正确认识角的两种定义及相关概念,掌握角的表示方法,正确理解平角、周角的概念,并能从图形上进行识别.

(二)整体感知

以现代化教学为手段,调动学生主动参与的积极性,使学生在动手过程中自觉地掌握知识点.

(三)教学过程

创设情境,引出课题

师:前几节我们具体研究了小学时初步认识的直线、射线、线段.另外,小学时我们还认识了另一种几何图形——角.你能说出几个日常生活中给我们角的形象的物体吗?(学生会很快说出周围的课桌、门窗、墙壁的角;圆规张开两脚;钟表的时针与分针间形成的角等等.)

【教法说明】为了更形象、更直观用实物投影显示一些实物图形.

让学生说出口常生活中给我们角的形象的物体,充分发挥学生的想像力,培养其观察事物的习惯,同时,活跃课堂气氛,调动学生学习积极性.也培养了学生从具体实物图形中抽象出几何图形的能力.

师:的确如此,在我们日常生活中,角的形象可以说无处不在.因此,一些图案的设计;机械零件的制图等等,常常用到角的画法、角的度量、角的大小比较等知识.从这节课开始我们就具体地研究角.希望同学们认真学习,掌握真本领,将来为社会做贡献.

探究新知

1.角的静止观点定义的得出

提出问题:通过以上举例和小学时你对角的认识,你能画出几个不同形状的角吗?

学生活动:在练习本上,画出几个不同形状的角,找一个学生到黑板上画图.可能出现下列情况:

师:根据小学所学你能指出所画角的边和顶点吗?(学生结合自己理解和小学所学,会很快指出角的边和顶点.)

师:同学们请观察,角的两边是前面我们学过的什么图形?它们的位置关系如何?你能否根据自己的理解和刚才老师的提问,描述一下怎样的几何图形叫做角吗?

学生活动:学生讨论,然后找代表回答.

教师在学生回答的基础上,给予纠正和补充,最后给出角的正确定义.

[板书]角:有公共端点的两条射线组成的图形叫做角,这个公共端点叫角的顶点,这两条射线叫角的两边.

(出示投影1)

指出以上图形,角的顶点和角的边.

提出问题:角的大小与角两边的长短有关系吗?

学生讨论并演示:拿大小不同的两副三角板或学生的三角板与教师的三角板对比演示.让学生尽可能地发表自己的看法和观点.不要拘泥于课堂上的形式,充分调动学生回答问题的积极性.

教师对学生的回答给予肯定或否定后小结:角的两边既然是射线,则可以向一方无限延长,所以角的大小与所画角的两边长短无关,仅与角的两边张开的程度有关.

【教法说明】角的定义的得出,不是教师以枯燥的形式强加给学生,而是让学生自己在画图、观察图形的过程中,由教师引导提出问题,步步追问,自觉地去认识.在问题解决的过程中,在复习旧知识中,不知不觉学到了新知识——角.这样缩短了新旧知识间的距离,减轻了学生心理上的压力,使他们感到新知识并不难,在轻松愉快中学到了知识.同时也会感受到新旧知识之间的联系.对发展学生用普遍联系的观点看待事物有很好的作用.

2.角的表示方法

师:研究角,像直线、射线、线段一样,可以用字母表示.下面我们阅读课本第25负第三自然段,总结角的表示方法有几种,你能否准确地表示一个角并读出来.

学生活动:学生看书,可以相互讨论,然后归纳出角的几种表示方法.

【教法说明】角的四种表示方法,课本中用一自然段说明,语言通俗,很易理解,学生完全可以通过阅读,分出四个层次,四种表示角的方法.因此教师要大胆放手,培养学生阅读理解能力,归纳总结能力.

学生阅读后,多找几个学生回答.最后通过不断补充、完善,归纳整理得出角的四种表示方法,教师整理板书.

[板书]

图1图2图3

【教法说明】总结以上四种表示方法时,对前两种表示方法,应注意的问题要加以强调.第一种表示方法必须注意:顶点字母在中间.第二种表示方法只限于顶点只有一个角.这是以后学生书写过程中最易出错的地方.另外,让学生区分角的符号与小于号.这些应注意的问题最好由学生讨论,学生发现后归纳总结.

反馈练习:投影打出以下题目

指出图中有几个角,并用适当的方法表示它们.

3.用旋转的观点定义角

师:同学们看老师从另一个角度提出新问题.前面我们给角下过定义,是在静止的情况下,观察角是由怎样的两条射线组成.下面,我们从运动的观点观察一下角的形成.

图1

演示:教师由电脑显示一条射线,然后射线绕其端点旋转,到另一个位置停止则形成一个角,如图1所示.举例帮助学生理解:钟摆看成一条射线,从一个位置摆到另一个位置则形成一个角.

学生讨论并试述定义:学生叙述不会太严密,教师纠正、补充后板书.

【板书】角:角还可以看成是一条射线从一个位置旋转到另一个位置所形成的图形.

说明:射线旋转时,经过的部分是角的内部.让学生说明平面内除了角的内部外还有几部分,分别是什么?(角的边与角的外部)

【教法说明】角的旋转观点的定义是教学中的一个难点,学生不易理解.因此,结合电脑的显示,举出实例等手段加强教学的直观性.

4.平角、周角的概念

师:角可以看成是一射线绕其端点旋转所形成的图形.那么,旋转时有无特殊情况呢?

由电脑演示并说明:

射线绕点旋转,终止位置和起始位置成一条直线时,所成的角叫平角,如图2所示.同样可表示为,顶点,两边为射线和射线.继续旋转,回到起始位置时,所成的角叫做周角,如图3所示.周角的顶点为,两边重合成一条射线.

图2

师说明:(1)平角与直线、周角与射线是两个不同的概念,它们的图形表面上看一样,但本质上不同.如:直线上取点表示点在直线上的位置,而平角是由顶点和边组成的角这一几何图形.

(2)在这一书中,所说的角,除非特殊注明,都是指没有旋转到成为平角的角.

【教法说明】平角、周角概念学生不容易理解,所以要通过直观演示后教师加以解释,但也不要解释得过多.否则,学生会更糊涂,简明扼要,条理清楚即可.

反馈练习:投影显示

1.指出图中以为顶点的平角的两边

2.指出图中(包含平角在内)的角有几个,并分别读出它们

对以上练习发现问题及时纠正.

变式练习,培养能力

投影出示:

1.如图1:可以记作吗?为什么?

图1

2.如图2:、分别是、上的点

①与是同一个角吗?

②与是同一个角吗?

3.如图3:是什么角?顶点、边分别是什么?

图2图3

【教法说明】为活跃课堂气氛,以上练习可以抢答.

(四)总结、扩展

学生看书,回答本节学了哪些主要内容,同桌可以相互讨论.最后教师按学生的回答归纳出本节知识脉络.投影显示:

八、布置作业

预习下节内容.

九、板书设计

同七、(四)中的格式,在表示方法中加上图形.

5.1 认识三角形(3)_教案模板


教学目标:

1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;

2、能证明出“三角形内角和等于180º”,能发现“直角三角形的两个锐角互余”;

3、按角将三角形分成三类.

教学重点:

1、角平分线的概念;

2、三角形的中线.

教学难点:

会角平分线的概念.即判别哪两个角相等.

教学过程:

一、探索练习:

1.任意画一个三角形,设法画出它的一个内角的平分线.

2.你能通过折纸的方法得到它吗?

学生可以用量角器来量出这个角的大小的方法画出这个角的平分线.也可以用折纸的方法得到角平分线.

在学生得到这条角平分线后,教师应该引导学生观察这三条线之间的位置关系,并且在交流的基础上得到结论:

三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线.简称三角形的角平分线.

教师应该规范学生的书面表达,给出下面的示范书写:

如图:∵ad是三角形abc的角平分线,

∴∠bad=∠cad=∠bac,

或:∠bac=2∠bad=2∠cad.

请你画出△abc(锐角三角形)的所有角平分线,并且观察这些角平分线有什么规律?对于钝角三角形呢?直角三角形呢?它们的角平分线也有这样的规律吗?

一个三角形共有三条角平分线,它们都在三角形内部,而且相交于一点.

例题:△abc中,∠b=80º∠c=40º,bo、co平分∠b、∠c,则∠boc=______.

活动二:1、任意画一个三角形,设法画出它的三条中线,它们有怎样的位置关系?小组交流.

2、你能通过折纸的方法得到它吗?

画中线时,学生可以用刻度尺通过测量的方法来得一边的中点.也可以用折纸的方法得到一边的中点.

在学生得到这条中线后,教师应该引导学生观察这当中的线段之间的大小关系,并且在交流的基础上得到结论:

连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线.简称三角形的中线.

教师应该规范学生的书面表达,给出下面的示范书写:

如图:∵ad是三角形abc的中线,

∴bd=dc=bc,

或:bc=2bd=2dc.

请你画出△abc(锐角三角形)的所有中线,并且观察这些中线有什么规律?对于钝角三角形呢?直角三角形呢?它们的中线也有这样的规律吗?

学生通过自己的动手操作,观察.应该比较快得到下面的结论:

一个三角形共有三条中线,它们都在三角形内部,而且相交于一点.

已知,ad是bc边上的中线,ab=5cm,ad=4cm,▲abd的周长是12cm,求bc的长.

巩固练习:

1、ad是△abc的角平分线(d在bc所在直线上),那么∠bad=_______=______.

△abc的中线(e在bc所在直线上),那么be=___________=_______bc.

2、在△abc中,∠bac=60º,∠b=45º,ad是△abc的一条角平分线,求∠adb的度数.

小结:(1)三角形的角平分线的定义;

(2)三角形的中线定义.

(3)三角形的角平分线、中线是线段.

作业:课本p125习题5.3:1、2.

教学后记:学生基本上能明白三角形的角平分线、中线的定义,但是在较复杂一点的题目中也会出现以下错误:

(1)已知ad是三角形abc的角平分线,则∠b=∠c;

(2)有部分生会把三角形的角平分线和三角形的中线混淆.

如:ad是三角形abc的角平分线,则bd=cd.

对角平分线、三角形的中线的运用有待真正的提高.

相似三角形的性质教案模板


(第2课时)

一、教学目标

1.掌握相似三角形的性质定理2、3.

2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理的应用.

2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

叙述相似三角形的性质定理1.

[讲解新课]

让学生类比“全等三角形的周长相等”,得出性质定理2.

性质定理2:相似三角形周长的比等于相似比.

∽,

同样,让学生类比“全等三角形的面积相等”,得出命题.

“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.

性质定理3:相似三角形面积的比,等于相似比的平方.

∽,

注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.

(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是,它们的面积之经不一定是,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.

例1已知如图,∽,它们的周长分别是60cm和72cm,且AB=15cm,,求BC、AB、、.

此题学生一般不会感到有困难.

例2有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.

解:设原地块为,地块在甲图上为,在乙图上为.

∽∽且,.

学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:,而

[小结]

1.本节学习了相似三角形的性质定理2和定理3.

2.重点学习了两个性质定理的应用及注意的问题.

七、布置作业

教材P247中A组4、5、7.

八、板书设计

本文网址://m.jk251.com/jiaoan/5228.html

相关文章
最新更新

热门标签