导航栏

×
范文大全 > 初中教案

一个数乘以小数相关教学方案

时间:2022-01-23 小数乘以整数 命题教学设计方案

教学目的:

1.使学生理解、掌握一个数乘以小数的意义;

2.掌握小数乘法的计算方法,并能正确进行小数乘法的计算;

3.培养学生迁移、类推能力,初步了解数学中的转化思想。

教学准备:投影仪,例2线段图的灯片。

教学过程:

一、复习

1.口述下面各数的意义。

0.50.820.325

2.填空。

(1)一个因数不变,另一个因数扩大10倍,积()

(2)一个因数扩大10倍,另一个因数扩大100倍,积()。

3.花布每米6.5元,买5米要用多少元?

学生独立完成,同时指名演板。订正的提问:

(1)列式时依据的数量关系是什么?

(2)"6.55"表示的意义是什么?

(3)你是怎样小数乘以整数的?

二、新课教学

1.教学一个数乘以小数的意义。

(1)出示例2花布每米6.5元,买0.5米和0.82米各用多少元?

(2)指名读题后提问:根据求总价的数量关系式你会列式吗?

0.5米的总价:6.50.5

0.82米的总价:6.50.82

(3)投影例2的线段图,教师结合图示讲解:0.5米是1米的十分之五,所以"6.50.5"表示求6.5的十分之五。

提问:你能说?quot;6.50.82"表示什么吗?"800.125"又表示什么呢?

(4)概括一个数乘以小数的意义。

提问:①上面三个算式的乘数有什么特点?

②概括地说一个数乘以小数表示的意义是什么?

教师小结:一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几……

③省略号的意思是什么?你能举一例加以说明吗?

(5)说出下面算式所表示的意义。

8.750.087500.2

2.教学小数乘法的计算。

(1)提问:你能把"6.50.5"转化为学过的旧知识来计算吗?说说你是怎样想的。

(2)学生试算,指名演板。

(3)集体讲解。要求学生说明积中为什么有两位小数。

(4)放手让学生计算"6.50.82"。

订正时重点强调怎样确定积的小数位数。并向学生说明积里小数末尾的"0"应划去。

(5)小结计算法则。

提问:①计算小数乘法,先按什么方法算积?

②积里的小数位数与因数中小数位数有什么关系?

③你能总结出小数乘法的计算法则吗?

学生回答后教师小结,学生齐说一遍。

(6)做一做。

670.32.146.2

3.新课小结。

提问:(1)这节课学习了哪些内容?

(2)一个数乘以小数的意义是什么?怎样计算小数乘法?

三、巩固练习

完成练习一的第5、6、8、9题。

练习第5题时注重加强小数乘以整数与一个数乘以小数的意义的比较。

四、课堂作业

完成练习一的第7题。

五、指导学生看书质疑

Jk251.com相关文章推荐

平均数相关教学方案


第一课时

素质教育目标

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容.

2.了解的意义,会计算一组数据的.

3.当一组数据的数值较大时,会用简算公式计算一组数据的.

(二)能力训练点

培养学生的观察能力、计算能力.

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯.

2.渗透数学来源于实践,反地来又作用于实践的观点.

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.

重点·难点·疑点及解决办法

1.教学重点:的概念及其计算.

2.教学难点:的简化计算.

3.教学疑点:简化公式的应用,a如何选择.

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a.

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲78686591074

乙9578768677

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

869110072938990857595

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识.

2.的概念及计算公式

一般地,如果有n个数.

那么①

叫做这n个数的,读作“x拨”.

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.

3.计算公式①的应用

例1一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温.

让学生动手计算,以巩固计算公式(一名学生板演)

教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,计算结果保留的位数与原数据相同.

例2从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210208200205202218206214215207195207218192202216185227187215

计算它们的平均质量.(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法.

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.

讲完例2后,教师指出几点:常数a的取法不是惟一的;读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受.

3.推导公式②

一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

那么,

因此,

即②

为了加深学生对公式②的认识,再让学生指出例2的、、各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识.

2.求n个数据的的公式①.

3.的简化计算公式②.这个公式很重要,要学会运用.

方法小结:通过本节课我们学到了示一组数据的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.

八、布置作业

教材P153中1、2、3、4.

九、板书设计

教学设计示例2

教学目标

(一)使学生了解的意义,会计算一组数据的.了解加权的意义,并会求加权;

(二)会运用的简化运算方法.

教学重点和难点

重点:会计算及运用的简化方法,会运用加权公式.

教学过程设计

(一)引入新课

在初中一年级代数课本P106的“读一读”那一节,讲的是求.有这样一例题:

女子排球队共有10名队员,身高(单位:米)分别为:

1.73,1.74,1.70,1.76,1.80,1.75,1.77,1.79,1.74,1.72.

求这个队的队员平均身高是多少?

解:求这个的计算方法有两个.

方法1:直接计算

方法2:简化计算

观察一下这些数都在1.75的上、下,这时,可以这样考虑:先计算各数与1.75的差,也就是先都减去1.75(为了不出现小数,不妨把单位换成厘米)得到-2厘米,-1厘米,-5厘米,1厘米,5厘米,0厘米,2厘米,4厘米,-1厘米,-3厘米.

计算这组数的,得:

因为前面计算时,每个数都减去了175厘米,所以把这里的得数0加上175,就得出这个排球队全体队员的平均身高是175厘米

在求一组数的时,只要这组数都接近某一个数,就可以采用这种简化的计算方法.

以上例子告诉我们什么是,怎样求.如果这组数存在着大致在某一个数的上、下波动的情况,可以用简便方法计算.

(二)新课

1.

在统计里,是重要概念之一,它是显示出一组数据的集中趋势的特征数字,也就是说这组数据都“接近”哪个数.

上面的公式①,就是我们在求女排队员身高的“直接算法”.

当一组数据x1,x2,…,xn的各个数值较大时,可将各数据同时减去一个适当

公式②就是我们在求女排队员身高的“简便方法”

例1某食品厂为了加强质量管理,对某天生产的罐头抽查了10个,样本净重如下(单位:克)

342,348,346,340,344,341,343,350,340,342.

求样本的.

解法2:把已知数据都减去342,得0,6,4,-2,2,-1,1,8,-2,0,

例2从一批货物中取出20件,称得它们的重量如下(单位:千克):

310,308,300,305,302,318,306,314,315,307,

295,307,318,292,302,316,285,327,287,315.

求样本的(结果保留到个位)

即样本为306千克.

解法2:

由于题中数据都较大,而且都在常数300上、下波动,把原数据都减去300,得:

10,8,0,5,2,18,6,14,15,7,-5,7,18,-8,2,16,-15,27,-13,15.

2.加权

设有甲、乙、丙三种可混合包装的食品,它们的单价分别是1.8元,2.5元,3.2元,现取甲种食品50公斤,乙种食品40公斤,丙种食品10公斤,把这三种食品混合后每公斤的单价是多少?

答:混合后的单价为2.50元.这个答案是不对的,因为混合后的售价不仅与每种食品的单价有关,而且还与每种食品的重量(公斤数)有关.这些食品混合后的售价应该等于

这种叫做加权.

一般说来,如果在n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次(这里f1+f2+……+fk=n),那么根据公式①,这n个数的可以表示为

计算加权的公式③,与计算的公式①,实际上是一回事.当一组数据中有不少数据多次重复出现时,用加权公式计算简便些.在公式③中,相同数据xi的个数fi叫做权.这个“权”,含有所占分量轻重的意思.fi越大,表示xi的个数越多,于是xi的“权”就越重.

例3某班有50名学生,数学期中考试成绩90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(结果保留到小数点后第一位).

在例1~例3的求问题中可以看到,能够反映出数据的集中趋势.

(三)课堂练习

若4,x,5的是7,则3,4,5,x,6五个数的是______.

(四)小结

1.用样本去估计总体,这是学习的目的.

2.计算公式,简化计算公式,加权计算公式都很重要,应根据具体情况,恰当选取哪个公式

(五)作业

1.数据15,23,17,18,22的是________.

2.5个数据的和为405,其中一个数据为85,那么另4个数据的是______.

(1)105,103,101,100,114,108,110,106,98,102;(共10个)

(2)4203,4204,4200,4194,4204,4210,4195,4199.(共8个)

4.在一个班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人.求这个班学生的平均年龄.

5.抽查了一个商店某月里5天的日营业额,结果如下(单位:元):

14845,25306,18954,11672,16330

(1)求样本;

(2)根据样本估计,这个商店在该月里平均日营业额约是多少?

6.在一段时间里,一个学生记录了其中8天他每天完成家庭作业所需要的时间,结果如下(单位:分):

80,70,90,70,60,50,80,60.

在这段时间里,该学生平均每天完成家庭作业所需要的时间约是多少?

作业答案与提示:

1.19.

5.(1)样本是17421元;

(2)根据上面计算结果,可估计在该月里平均日营业额约为17421.

根据样本,可估计该学生平均每天完成家庭作业所需时间约为70分.

课堂教学设计说明

1.是统计中的重要概念之一,通过样本来估计总体.样本容量取得越大,则用样本估计的总体越精确,也就是所表示的总体平均的变化趋势越集中于准确值.作业中的第5,6两题就是为体现这种思想而设计的.

2.这一节课的目标是要弄清两个概念(、加权),三个公式(求平均值公式,求平均值的简化公式和求加权公式).

教学设计中,先从初中一年级代数课本的内容引出概念、计算公式及简化公式.所以很自然地转入新课,在介绍了概念后,紧接着对计算公式作出一般性的证明.

在加权一节,先列举一个易犯的错误,分析其错误原因,然后推导出公式.

有理数的加法相关教学方案


教学案例一、设计思路借助生活中熟悉的例子“数轴”比赛中的加减分,使学生着先理解(+1)+(-1)=0和(-1)+(+1)=0,然后利用正负抵消的思路,讨论整理加法的几种情形,并借助数轴加深理解后由特例归纳出法则。二、教学目标1.经历探索有理数加法法则和运算法则和运算律的过程理解法则和运算律。2.能熟练进行整理加法运算,并能用运算律简化运算。三、教学重点和难点重点:能熟练的进行整数加法运算法则。难点:理解法则和运算律。四、教学过程1、创设情境,引入课题(1)举出比赛中加减计分的例子板书:有理数加法(2)师生互动,探索规律出示题目:31+76+69问题:小学的加法交换律的内容,能否利用它来解答有理数加法的题目呢?出示例2:31+(-28)+28+29请两位同学上黑板,一位同学用加法法则计算,一位同学用加法交换律计算,其余学生自己动手解答,互相交流。2、总结规律,得出结论运用加法结合律可以使有理数运算简化,由此得出,小学的加法结合律、交换律对于有理数同样是适用的。3、示例3、学生板演,强调使用交换律、结合律4、课堂练习:①(-25)+(-7)+25②2+[(-3)+(-8)]③43+(-77)+27+(-43)由学生完成,教师指导5、课堂小结①这节课你学会了一种什么运算?②你有何体会?6、作业:五、教学反思:这节课我为学生创造了思考、交流的机会,使学生合作交流。但计算中个别学生仍有漏符号的问题。

数学教案-平均数相关教学方案


平均数

平均数

教学目标:

1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

教学重点:会求一组数据的算术平均数和加权平均数.

教学难点:体会平均数在不同情境中的应用.

教学方法:引导-讨论-交流.

教学手段:多媒体

教学过程:

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流.

找同学回答后,给出算术平均数的定义.

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术平均数,简称平均数,记为.读作“x拔”.

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁1618212324262934

相应队员数12413121

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)

你能说说小明这样做的道理吗?找同学回答.

巩固练习一:

1.某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下:(单位:元)

10,12,13.5,21,40.8,19.5,20.8,25,16,30.

这10名同学平均捐款元.(课本P216随堂练习1)

2.一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中环(精确到0.1)

3.小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?

A93分B95分C92.5分D94分

例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:

测试项目测试成绩

ABC

创新72;85;67

综合知识50;74;70

语言88;45;67

(1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?

(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用?

解:(1)A的平均成绩为(分).

B的平均成绩为(分).

C的平均成绩为(分).

因此候选人A将被录用.

(2)根据题意,3人的测试成绩如下:

A的测试成绩为(分)

B的测试成绩为(分)

C的测试成绩为(分)

因此候选人B将被录用.

思考:(1)(2)的结果不一样说明了什么?

实际问题中,一组数据里的各个数据的“重要程度”未必相同.因此,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称

为A的三项测试成绩的加权平均数.

巩固练习二:

1.某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少?

变形训练:(小组交流)

1.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克元;

2.某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16.5,18,18.5.如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为.

小结:先由学生总结,教师再补充.通过本节的学习,我们掌握了:1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.

布置书面作业:课本P216习题8.11、2

课外作业:(两题任选一题)

1.到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数.

2.请设计一个利用“加权平均数”方法来求平均数的应用题,再将其“权”作适当改变,观察平均值的变化.观察“权”的变化对结果的影响.

板书设计

1.平均数

算术平均数:

对于n个数x1,x2,…xn我们把

叫做这个n数的算术平均数,简称平均数,记为.

读作“x拔”

例1解:(1)A的平均成绩为

B的平均成绩为.

C的平均成绩为.

因此候选人A将被录用(2)根据题意,3人的测试成绩如下:

A的测试成绩为(分)

B的测试成绩为(分)

C的测试成绩为(分)

因此候选人B将被录用.

加权平均数:称

为A的三项测试成绩的加权平均数.

由一个二元一次方程一个二元二次方程组成的方程组相关教学方案


第一课时

一、教学目标

1.使学生知道二元二次方程的概念、二元二次方程组的概念;

2.使学生掌握由代入法解.

3.通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;

4.通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;

5.通过方程组的学习,渗透方程组解的对称美.

二、重点·难点·疑点及解决办法

1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.

2.教学难点:理解解二元二次方程组的基本思想.

3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.

4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.

三、教学过程

1.复习提问

(1)举例说明什么是二元一次方程、什么是二元一次方程组?

(2)解二元一次方程组的基本思路是什么?

(3)解二元一次方程组有哪几种方法?

问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.

2.新课讲解

我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.

关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.

(1)二元二次方程及二元二次方程组

观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.

定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.

二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项.

定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:

都是二元二次方程组.

(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.

我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.

解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.

对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.

例1解方程组

分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得再代入①可以求出的值,从而得到方程组的解.

解:由②,得

把③代入①,整理,得

解这个方程,得

.

把代入③,得;

把代入③,得.

所以原方程的解是

说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.

巩固练习:教材P571、2

四、总结、扩展

关于本节的小结,教师引导学生共同总结.

本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.

学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:

1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.

2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.

3.解一元二次方程或一元一次方程.

4.将所求的值代入由1所得的式子求出另一未知数.

5.写出方程组的解.

五、布置作业

教材P581,2.

六、板书设计

数学教案-由一个二元一次方程一个二元二次方程组成的方程组相关教学方案


第一课时

一、教学目标

1.使学生知道二元二次方程的概念、二元二次方程组的概念;

2.使学生掌握由代入法解由一个二元一次方程和一个二元二次方程组成的方程组.

3.通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;

4.通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;

5.通过方程组的学习,渗透方程组解的对称美.

二、重点难点疑点及解决办法

1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.

2.教学难点:理解解二元二次方程组的基本思想.

3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.

4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.

三、教学过程

1.复习提问

(1)举例说明什么是二元一次方程、什么是二元一次方程组?

(2)解二元一次方程组的基本思路是什么?

(3)解二元一次方程组有哪几种方法?

问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.

2.新课讲解

我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.

关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.

(1)二元二次方程及二元二次方程组

观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.

定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.

二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项.

定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:

都是二元二次方程组.

(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.

我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.

解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.

对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.

例1解方程组

分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得再代入①可以求出的值,从而得到方程组的解.

解:由②,得

把③代入①,整理,得

解这个方程,得

.

把代入③,得;

把代入③,得.

所以原方程的解是

说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.

巩固练习:教材P571、2

四、总结、扩展

关于本节的小结,教师引导学生共同总结.

本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.

学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:

1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.

2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.

3.解一元二次方程或一元一次方程.

4.将所求的值代入由1所得的式子求出另一未知数.

5.写出方程组的解.

五、布置作业

教材P581,2.

六、板书设计

相关教学方案


教学目标

1.使学生知道我国气候的主要特征,学会分析气候特征的方法,明确我国丰富的气候资源为发展农业生产提供了有利条件。

2.使学生能联系实际,说明气候对生产和生活的影响。

3.从气候与人类活动的关系中,使学生进一步认识人与自然的密切关系;通过认识我国气候为农业生产提供的有利条件,增强学生热爱祖国的情感。

教学重点

1.我国气候的主要特征。

2.我国气候为农业生产提供的有利条件。

教学难点

分析、归纳、概括我国气候的主要特征。

教学媒体

我国温度带和干湿区挂图或投影片,几个城市的气温曲线图、降水柱状图。

教学过程

【复习提问】前几节课我们学习了中国的气温和降水等知识,请同学们回忆两个问题:

(1)我国冬季和夏季气温分布的有什么特点?

(2)我国年降水量在地区分布和季节分配上有什么特点?

学生回答。

【导入新课】知道了我国气温和降水的一些待点,我国气候有什么特征呢?今天这节课,我们将运用所学的知识,分析、归纳出我国气候的主要特征,及我国气候对农业生产的影响。

【板书】

【读表提问】请同学们阅读课本第57页,“我国与世界纬度相近地区气温的比较”表,回答下列问题:

(1)1月份,我国的齐齐哈尔、北京的平均气温,分别比法国的巴黎、美国的纽约低多少摄氏度?

学生回答:分别低22.7℃和3.7℃。

(2)7月份,齐齐哈尔、北京的气温分别比巴黎、纽约高多少摄氏度?

学生回答:分别高26.3℃和7.3℃。

(3)齐齐哈尔、北京的气温年较差,分别比巴黎、纽约大多少摄氏度?

学生回答:齐齐哈尔比巴黎大26.3℃,北京比纽约大7.3℃。

【提问】对上述问题,你能得出什么结论?(学生讨论回答。)

【分析、归纳】冬季,我国比同纬度地区冷;夏季,我国大部分地区又比同纬度除沙漠地区以外暖热。因此,我国大部分地区的气温年较差比同纬度地区的气温年较差偏大。由此得出气温冬冷夏热的特点。大陆性气候显著。

【展示】北京、齐齐哈尔、巴黎、纽约降水量柱状图。使同学们阅读柱状图,比较四个城市降水的季节分配有什么共同的特点。

学生讨论、回答。

【归纳总结】我国大部分地区降水的季节分配很不均匀,主要集中在7~8月份,降水的季节变化大;再加上降水的年际变化也较大,由此得出我国冬季干燥,夏季多雨,大陆性强的气候特点。归纳起来,一是说明我国季风气候显著,二是具有大陆性的特点。

【板书】一、大陆性季风气候显著

【读图提问】展示北京、武汉、哈尔滨等城市气温曲线降水量柱状图。请同学们读图。思考我国夏季气温、降水的共同特点什么?

学生回答:我国夏季普遍高温,降水集中。

【总结】这就是我国气候的第二个特证:雨热同期。

【板书】二、雨热同期

【启发提问】雨热同期。夏季,我国除了青藏高原,天山等少数高原,高山外,南北普遍高温,而且是世界同纬度上除沙漠以外最暖热的地区。因此,我国热量条件优越。这种优越的热量条件对农业生产有没有好处?有什么好处?请同学思考回答。

学生讨论、回答。

【概括总结】正如同学们所说,我国优越的热量条件,对农业生产很有利,可以使一些喜温的高产作物如水稻、玉米、棉花等。在我国广大的北方地区也有大面积种植;使得水稻、棉花的种植界线的纬度之高,在世界上也是数一数二的。由此可见,夏热是我国气候资源的一大优势。

【板书】1.夏热是我国气候资源的一大优势。

【启发提问】在高温的夏季,也是我国降水集中的季节,雨热同季对农作物生长有什么影响?

同学讨论、回答。

【归纳总结】农作物在高温的季节生长旺盛,需要大量水分,而我国高温多雨的夏季,正适合农作物、森林和牧草的生长。因此,高温期多雨期与农作物的生长期一致,是我国气候资源的又一大优势。

【板书】2.高温期与多雨期一致,对农作物、森林、牧草的生长十分有利。

【启发提问】请同学们回忆一下:(1)西亚、北非在北纬15°~30°的地区,气候景观有什么特点?

(2)为什么我国处于同一纬度地带的长江以南地区,却成为降水丰沛的“鱼米之乡”?

学生讨论、回答。

【概括总结】在世界上北纬15°~30°的纬度带内,由于受副热带高气压带的影响,气候炎热干燥,大多呈现沙漠和荒漠景观。我国处于同一纬度地区的长江以南地区,由于受到东南季风和西南季风的影响,降水丰沛,年降水量在800毫米以上。并且雨热同季,利于水稻的生长,是我国重要的稻米产区,河湖众多,淡水鱼产量很大,从而成为我国著名的“鱼米之乡”。

【展示挂图或投影片】展示我国温度带和干湿地区划分图。

【复习提问】请同学们读我国温度带划分图和我国干湿地区划分图,说说我国可划分为哪几个温度带和干湿区?

学生指图回答。

【讲述】我国既有五个温度带和一个高原气候区,又有四个干湿地区,(投影片迭加演示)多种多样的温度带迭加在多种多样的干湿区上,这说明我国的气候复杂多样。气候的复杂多样是我国气候的又一显著特征。

【板书】三、气候复杂多样

1.多种多样的温度带和干湿区是我国气候复杂多样的一个重要标志。

【读图思考】请同学们读课本第38页4.23图,“横断山区气候和植被的垂直变化”,和第59页4.24图,“秦岭南北”,思考说明地形对气候和植被有什么影响?

【学生在教师的启发下回答问题】横断山区海拔很高,达数千米,随着山势的增高,气温降低,植被随之发生变比,从山下的常绿阔叶林依次过渡到针阔混交林—针叶林—高山草甸一雪线以上。说明地势的高低对气候影响很大,进而影响植被种类的生长分布。

秦岭南北一图,表示了山南、山北在植物和景观上的差异。山南生长的是亚热带植物—柑橘树,山北生长的是温带植物——苹果树。这是因为秦岭在气候上起着屏障作用,可阻挡北部冬季风的南下。所以秦岭南坡气温高,为亚热带景观;北坡气温低,为暖温带景观。

【讲述】由以上分析得出:地形是影响气候的重要因素之一。我国地形复杂多样,地势高低悬殊,使得我国的气候更加复杂多样。

【板书】2.地势高低悬殊,地形多样,使我国气候更加复杂多样。

【启发提问】我国气候的复杂多样,对农业生产有什么好处,多样的温度带和干湿区对各种植物和农作物品种的生长有什么影响?

学生讨论、回答。

【归纳总结】我国气候复杂多样。因此,世界上大多数农作物和动植物都能在我国找到适合生长的地区,使我国的农作物及各种动植物资源极其丰富。

【板书】3.气候复杂多样,使得我国的农作物和动植物资源极其丰富。

【复习巩固】选作复习题

(4)我国气候有哪些主要特征?(3条)

(2)我国气候对农业生产提供了哪些有利条件?

板书设计

一、大陆性季风气候显著

二、雨热同期

l.夏热是我国气候资源的一大优势。

2.高温期与多雨期一致,对农作物、森林、牧草的生长十分有利。

三、气候复杂多样

1.多种多样的温度带和干湿区是我国气候复杂多样的一个重要标志。

2.地势高低悬殊,地形多样,使我国气候更加复杂多样。

3.气候复杂多样,使得我国的农作物和动植物资源极其丰富。

本文网址://m.jk251.com/jiaoan/6844.html

相关文章
最新更新

热门标签