导航栏

×
范文大全 > 初中教案

一个数乘以小数相关教学方案

按照惯例,初中教师必须撰写自己的教案,通过不断的写教案,我们可以提高自己的语言组织能力,一份完整的教案有许多内容,初中教案该怎么写?欢迎大家阅读小编为大家收集整理的《一个数乘以小数相关教学方案》。

教学目的:

1.使学生理解、掌握一个数乘以小数的意义;

2.掌握小数乘法的计算方法,并能正确进行小数乘法的计算;

3.培养学生迁移、类推能力,初步了解数学中的转化思想。

教学准备:投影仪,例2线段图的灯片。

教学过程:

一、复习

1.口述下面各数的意义。

0.50.820.325

2.填空。

(1)一个因数不变,另一个因数扩大10倍,积()

(2)一个因数扩大10倍,另一个因数扩大100倍,积()。

3.花布每米6.5元,买5米要用多少元?

学生独立完成,同时指名演板。订正的提问:

(1)列式时依据的数量关系是什么?

(2)"6.55"表示的意义是什么?

(3)你是怎样小数乘以整数的?

二、新课教学

1.教学一个数乘以小数的意义。

(1)出示例2花布每米6.5元,买0.5米和0.82米各用多少元?

(2)指名读题后提问:根据求总价的数量关系式你会列式吗?

0.5米的总价:6.50.5

0.82米的总价:6.50.82

(3)投影例2的线段图,教师结合图示讲解:0.5米是1米的十分之五,所以"6.50.5"表示求6.5的十分之五。

提问:你能说?quot;6.50.82"表示什么吗?"800.125"又表示什么呢?

(4)概括一个数乘以小数的意义。

提问:①上面三个算式的乘数有什么特点?

②概括地说一个数乘以小数表示的意义是什么?

教师小结:一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几……

③省略号的意思是什么?你能举一例加以说明吗?

(5)说出下面算式所表示的意义。

8.750.087500.2

2.教学小数乘法的计算。

(1)提问:你能把"6.50.5"转化为学过的旧知识来计算吗?说说你是怎样想的。

(2)学生试算,指名演板。

(3)集体讲解。要求学生说明积中为什么有两位小数。

(4)放手让学生计算"6.50.82"。

订正时重点强调怎样确定积的小数位数。并向学生说明积里小数末尾的"0"应划去。

(5)小结计算法则。

提问:①计算小数乘法,先按什么方法算积?

②积里的小数位数与因数中小数位数有什么关系?

③你能总结出小数乘法的计算法则吗?

学生回答后教师小结,学生齐说一遍。

(6)做一做。

670.32.146.2

3.新课小结。

提问:(1)这节课学习了哪些内容?

(2)一个数乘以小数的意义是什么?怎样计算小数乘法?

三、巩固练习

完成练习一的第5、6、8、9题。

练习第5题时注重加强小数乘以整数与一个数乘以小数的意义的比较。

四、课堂作业

完成练习一的第7题。

五、指导学生看书质疑

jK251.com其他人还在看

由一个二元一次方程一个二元二次方程组成的方程组相关教学方案


第一课时

一、教学目标

1.使学生知道二元二次方程的概念、二元二次方程组的概念;

2.使学生掌握由代入法解.

3.通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;

4.通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;

5.通过方程组的学习,渗透方程组解的对称美.

二、重点·难点·疑点及解决办法

1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.

2.教学难点:理解解二元二次方程组的基本思想.

3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.

4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.

三、教学过程

1.复习提问

(1)举例说明什么是二元一次方程、什么是二元一次方程组?

(2)解二元一次方程组的基本思路是什么?

(3)解二元一次方程组有哪几种方法?

问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.

2.新课讲解

我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.

关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.

(1)二元二次方程及二元二次方程组

观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.

定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.

二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项.

定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:

都是二元二次方程组.

(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.

我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.

解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.

对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.

例1解方程组

分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得再代入①可以求出的值,从而得到方程组的解.

解:由②,得

把③代入①,整理,得

解这个方程,得

.

把代入③,得;

把代入③,得.

所以原方程的解是

说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.

巩固练习:教材P571、2

四、总结、扩展

关于本节的小结,教师引导学生共同总结.

本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.

学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:

1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.

2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.

3.解一元二次方程或一元一次方程.

4.将所求的值代入由1所得的式子求出另一未知数.

5.写出方程组的解.

五、布置作业

教材P581,2.

六、板书设计

数学教案-由一个二元一次方程一个二元二次方程组成的方程组相关教学方案


第一课时

一、教学目标

1.使学生知道二元二次方程的概念、二元二次方程组的概念;

2.使学生掌握由代入法解由一个二元一次方程和一个二元二次方程组成的方程组.

3.通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;

4.通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;

5.通过方程组的学习,渗透方程组解的对称美.

二、重点难点疑点及解决办法

1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.

2.教学难点:理解解二元二次方程组的基本思想.

3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.

4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.

三、教学过程

1.复习提问

(1)举例说明什么是二元一次方程、什么是二元一次方程组?

(2)解二元一次方程组的基本思路是什么?

(3)解二元一次方程组有哪几种方法?

问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.

2.新课讲解

我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.

关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.

(1)二元二次方程及二元二次方程组

观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.

定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.

二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项.

定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:

都是二元二次方程组.

(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.

我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.

解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.

对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.

例1解方程组

分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得再代入①可以求出的值,从而得到方程组的解.

解:由②,得

把③代入①,整理,得

解这个方程,得

.

把代入③,得;

把代入③,得.

所以原方程的解是

说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.

巩固练习:教材P571、2

四、总结、扩展

关于本节的小结,教师引导学生共同总结.

本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.

学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:

1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.

2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.

3.解一元二次方程或一元一次方程.

4.将所求的值代入由1所得的式子求出另一未知数.

5.写出方程组的解.

五、布置作业

教材P581,2.

六、板书设计

有理数的加法相关教学方案


教学案例一、设计思路借助生活中熟悉的例子“数轴”比赛中的加减分,使学生着先理解(+1)+(-1)=0和(-1)+(+1)=0,然后利用正负抵消的思路,讨论整理加法的几种情形,并借助数轴加深理解后由特例归纳出法则。二、教学目标1.经历探索有理数加法法则和运算法则和运算律的过程理解法则和运算律。2.能熟练进行整理加法运算,并能用运算律简化运算。三、教学重点和难点重点:能熟练的进行整数加法运算法则。难点:理解法则和运算律。四、教学过程1、创设情境,引入课题(1)举出比赛中加减计分的例子板书:有理数加法(2)师生互动,探索规律出示题目:31+76+69问题:小学的加法交换律的内容,能否利用它来解答有理数加法的题目呢?出示例2:31+(-28)+28+29请两位同学上黑板,一位同学用加法法则计算,一位同学用加法交换律计算,其余学生自己动手解答,互相交流。2、总结规律,得出结论运用加法结合律可以使有理数运算简化,由此得出,小学的加法结合律、交换律对于有理数同样是适用的。3、示例3、学生板演,强调使用交换律、结合律4、课堂练习:①(-25)+(-7)+25②2+[(-3)+(-8)]③43+(-77)+27+(-43)由学生完成,教师指导5、课堂小结①这节课你学会了一种什么运算?②你有何体会?6、作业:五、教学反思:这节课我为学生创造了思考、交流的机会,使学生合作交流。但计算中个别学生仍有漏符号的问题。

数学教案-平均数相关教学方案


平均数

平均数

教学目标:

1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

教学重点:会求一组数据的算术平均数和加权平均数.

教学难点:体会平均数在不同情境中的应用.

教学方法:引导-讨论-交流.

教学手段:多媒体

教学过程:

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流.

找同学回答后,给出算术平均数的定义.

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术平均数,简称平均数,记为.读作“x拔”.

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁1618212324262934

相应队员数12413121

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)

你能说说小明这样做的道理吗?找同学回答.

巩固练习一:

1.某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下:(单位:元)

10,12,13.5,21,40.8,19.5,20.8,25,16,30.

这10名同学平均捐款元.(课本P216随堂练习1)

2.一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中环(精确到0.1)

3.小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?

A93分B95分C92.5分D94分

例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:

测试项目测试成绩

ABC

创新72;85;67

综合知识50;74;70

语言88;45;67

(1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?

(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用?

解:(1)A的平均成绩为(分).

B的平均成绩为(分).

C的平均成绩为(分).

因此候选人A将被录用.

(2)根据题意,3人的测试成绩如下:

A的测试成绩为(分)

B的测试成绩为(分)

C的测试成绩为(分)

因此候选人B将被录用.

思考:(1)(2)的结果不一样说明了什么?

实际问题中,一组数据里的各个数据的“重要程度”未必相同.因此,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称

为A的三项测试成绩的加权平均数.

巩固练习二:

1.某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少?

变形训练:(小组交流)

1.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克元;

2.某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16.5,18,18.5.如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为.

小结:先由学生总结,教师再补充.通过本节的学习,我们掌握了:1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.

布置书面作业:课本P216习题8.11、2

课外作业:(两题任选一题)

1.到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数.

2.请设计一个利用“加权平均数”方法来求平均数的应用题,再将其“权”作适当改变,观察平均值的变化.观察“权”的变化对结果的影响.

板书设计

1.平均数

算术平均数:

对于n个数x1,x2,…xn我们把

叫做这个n数的算术平均数,简称平均数,记为.

读作“x拔”

例1解:(1)A的平均成绩为

B的平均成绩为.

C的平均成绩为.

因此候选人A将被录用(2)根据题意,3人的测试成绩如下:

A的测试成绩为(分)

B的测试成绩为(分)

C的测试成绩为(分)

因此候选人B将被录用.

加权平均数:称

为A的三项测试成绩的加权平均数.

数学教案-由一个二元二次方程一个可以分解为两个二元一次方程的方的教学方案


第一课时

一、教学目标

1.使学生掌握由一个二元二次方程和一个可以分解为两个二元一次方程组成的方程组的解法.

2.通过例题的分析讲解,进一步提高学生的分析问题和解决问题的能力;

3.通过一个二元二次方程解法的分析,使学生进一步体会“消元”和“降次”的数学思想方法,继续向学生渗透“转化”的辨证唯物主义观点.

二、重点难点疑点及解决办法

1.教学重点:通过把一个二元二次方程分解为两个二元一次方程来解由两个二元二次方程组成的方程组.

2.教学难点:正确地判断出可以分解的二元二次方程.

3.教学疑点:降次后的二元一次方程与哪个方程重新组成方程组,一定要分清楚.

4.解决办法:(1)看好哪个二元二次方程能分成两个二元一次方程,它们之间是“或”的关系,不能联立成方程组.(2)分解好的二元一次方程应与另一个二元二次方程组成两个二元二次方程组.

三、教学过程

1.复习提问

(1)我们所学习的二元二次方程组有哪几种类型?

(2)解二元二次方程组的基本思想是什么?

(3)解由一个二元一次方程和一个二元二次方程组成的方程组的基本方法是什么?其主要步骤是什么?

(4)解方程组:.

(5)把下列各式分解因式:

①;②;③.

关于问题设计的说明:

由于二元二次方程组的第一节课已经向学生阐明了我们所研究的二元二次方程组有两种类型.其一是由一个二元一次方程和一个二元二次方程组成的二元二次方程组;其二是由

两个二元二次方程所组成的方程组.由于第一种类型我们已经研究完,使学生自然而然地接

受了第二种类型研究的要求.关于问题(2)的提出,由于两种类型的二元二次方程组的解题思想均为“消元”和“降次”,所以问题(2)让学生懂得“消元”和“降次”的数学思想,贯穿于解二元二次方程组的始终.问题(3)、(4)是对上两节课内容的复习,以便学生对已学过的知识得到进一步的巩固.由于本节课的学习内容是由两个二元二次方程组成的二元二次方程组的解法,其中有一个二元二次方程可以分解,因此,问题(5)的设计是为本节课的学习内容做准备的.

2.例题讲解

例1解方程组

分析:这是一个由两个二元二次方程组成的二元二次方程组,其解题的基本思路仍为“消元”、“降次”,使之转化为我们已经学过的方程组或方程的解法.那么如何转化呢?关于转

化的形式有两种,要么降二次为一次,要么化二元为一元我们通过观察方程组中的两个方程有什么特点,可以发现:方程组(2)的右边是0,左边是一个二次齐次式,并且可以分解为,因此方程(2)可转化为,即或,从而可分别和方程(1)组成两个由一个二元一次方程和一个二元二次方程组成的二元二次方程组,从而解出这两个方程组,得到原方程组的解.

解:由(2)得

因此,原方程组可化为两个方程组

解方程组,得原方程组的解为

说明:本题可由教师引导学生独立完成,教师应对学生的解题格式给予强调.

例2解方程组

分析:这个方程组也是由两个二元二次方程组成的方程组,通过认真的观察与分析可以

发现方程(2)的左边是一个完全平方式,而右边是完全平方米,因此将右边16移到左边后可利用平方差公式进行分解,,即或,从而可仿例1的解法进行.

解:由(2)得

.

即,或.

因此,原方程组可转化为两个方程组

解这两个方程组,得原方程组的解为

巩固练习:

1.教材P60中1.此练习可让学生口答.

2.教材P60中2.此题让学生独立完成.

四、总结扩展

本节小结,内容较为集中并且比较简单,可引导学生从两个方面进行总结:(1)本节课学习了哪种类型的方程组的解法;(2)这种类型的方程组的解题步骤如何?

这节课我们学习了由两个二元二次方程组成的并且有一个方程是可以分解成两个二元一次方程的方程组的解法,解这种类型的方程组的步骤是将原二元二次方程组转化为两个已学习过的二元二次方程组,从而求出原方程组的解.

关于比较特殊的二元二次方程组的解法,教师可以利用辅导课的时间补充两个二元二次方程都可以分解的二元二次方程组的解法.

五、布置作业

1.教材P61A1,2,3.

六、板书设计

探究活动

若关于的方程只有一个解,试求出值与方程的解.

解:化简原方程,得(1)

当时,原方程有惟一解,符合题意.

当时,方程(1)根据的判别式

∴,故方程(1)总有两个不同的实数解,按题意其中必有一根是原方程的增根,原方程可能产生的增根只是0或1.

把代入(1),方程不成立,不合题,故增根只能是,把代入(1)得,此时方程为,

∴当时,分式方程的解为;当时,分式方程的解为.

由一个二元一次方程一个二元二次方程组成的方程组的教学方案


第一课时

一、教学目标

1.使学生知道二元二次方程的概念、二元二次方程组的概念;

2.使学生掌握由代入法解.

3.通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;

4.通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;

5.通过方程组的学习,渗透方程组解的对称美.

二、重点·难点·疑点及解决办法

1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.

2.教学难点:理解解二元二次方程组的基本思想.

3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.

4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.

三、教学过程

1.复习提问

(1)举例说明什么是二元一次方程、什么是二元一次方程组?

(2)解二元一次方程组的基本思路是什么?

(3)解二元一次方程组有哪几种方法?

问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.

2.新课讲解

我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.

关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.

(1)二元二次方程及二元二次方程组

观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.

定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.

二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项.

定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:

都是二元二次方程组.

(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.

我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.

解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.

对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.

例1解方程组

分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得再代入①可以求出的值,从而得到方程组的解.

解:由②,得

把③代入①,整理,得

解这个方程,得

.

把代入③,得;

把代入③,得.

所以原方程的解是

说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.

巩固练习:教材P571、2

四、总结、扩展

关于本节的小结,教师引导学生共同总结.

本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.

学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:

1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.

2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.

3.解一元二次方程或一元一次方程.

4.将所求的值代入由1所得的式子求出另一未知数.

5.写出方程组的解.

五、布置作业

教材P581,2.

六、板书设计

事物的正确答案不止一个教案


13事物的正确答案不止一个

教学目标:

1.学习做一个富有创造性的人。

2.理解本文的中心论点和分论点。

3.理解并运用事实论据。

重点难点

1.重点:理解本文的中心论点和分论点。

2、难点:理解并运用事实论据。

教学时间:一课时

教学过程

一、导入

前两年高考作文题,就是以本文的开头的图形为题,它告诉我们什么道理呢?

二、阅读课文思考问题:

1.事物的正确答案为什么不止一个?

因为事物是丰富复杂的,生活中解决问题的方法并非只有一个,而是多种多样。

2、为什么要确立“事物的正确答案不止一个”的思维方式?是用了怎样的论证方法阐明这一事理的?运用这一论证方法的好处是什么?

作者运用了正反对比的论证方法阐述这一道理。先从反面说,“如果你认为正确答案只有一个的话,当你找到某个答案以后,就会止步不前。”;再从正面说。“不满足于一个答案,不放弃探求这一点非常重要。”正反对比,使说理全面,而双透彻,增强了说服力。

3、产生创造性思维必须具备哪些条件?又用了怎样的论证方法论证的?

(1)富有创造性的人总是孜孜不倦地汲取知识,使自己学识渊博。

(2)必须有探求新事物,并为此而活用知识的态度和意识。

(3)持之以恒地进行各种尝试。

作者采用了举例论证的方法,具体而又确凿地阐明了事理。

4、区分一个人是否拥有创造力,关键看什么?

拥有创造力的人留意自己细小的想法。即使他们不知道将来会产生怎样的结果,但他们很清楚,小的创意会打开大的突破口,并坚信自己一定能使之变为现实。

5、如何才能成为一个富有创造性的人?

1关键是要经常保持好奇心,不断积累知识;2不满足于一个答案,而去探求新思路,去运用所得的知识3一旦产生小的灵感,相信它的价值,并楔而不舍地把它发展下去。

三、阅读3-6段,回答问题。

1、第五段中的“这种情况”、“当事人”“它”分别指什么?

这种情况:知识随时都可能进行组合,形成新的创意。当事人:富有创造性的人。它:新的创意。

2、认为正确答案只有一个有什么危害性?

当你找到某个答案以后,就会止步不前。

3、选文中,有一个非常重要的过渡段,请指出是哪一段?并说说其作用?

第四段,承上启下,使文章层次分明,又结构严谨。

4、根据选文内容,概括“创造性的思维”所必需的“要素”。

(1)富有创造性的人总是孜孜不倦地汲取知识,使自己学识渊博。

(2)必须有探求新事物,并为此而活用知识的态度和意识。

(3)持之以恒地进行各种尝试。

5、为什么说“不满足于一个答案,不放弃探求这一点非常重要”?

因为生活中解决问题的方法并非只有一个,而是多种多样。如果你认为正确答案只有一个的话,当你找到某个答案以后,就会止步不前。

四、小结

本文按照逐层递进的逻辑顺序论证了怎样做一个富有创造性的人这个中心论点。

五、作业:完成课后练习

数学教案-有理数的减法相关教学方案


教学目标

1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

教学建议

(一)重点、难点分析

本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

教学设计示例

有理数的减法

一、素质教育目标

(一)知识教学点

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过有理数的减法运算,培养学生的运算能力.

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);(2)-3+(-7);

(3)-10+(+3);(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3).(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1(例题1、2)]

例1计算(1)(-3)-(-5);(2)0-7;

例2计算(1)7.2-(-4.8);(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);(6)0-5.

2.计算

(1)(-2.5)-5.9;(2)1.9-(-0.6);

(3)()-;(4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

八、随堂练习

1.填空题

(1)3-(-3)=____________;(2)(-11)-2=______________;

(3)0-(-6)=____________;(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;(8)-4-()=10;

(9)如果,,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

(4)方程在有理数范围内无解.()

(5)若,,,.()

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

(二)选做题:课本第84页中5、8.

十、板书设计

本文网址:http://m.jk251.com/jiaoan/6844.html

相关文章
最新更新

热门标签