导航栏

×
范文大全 > 初中教案

四边形的教学方案

时间:2022-01-26

作为初中老师,你一定写过教案吧,教案有利于教学水平的提高,可以通过编写教案认识自己教学的优点和不足。自己的初中教案如何写呢?下面是小编为大家整理的“四边形的教学方案”相关内容,仅供参考,欢迎大家阅读。

教学建议

1.教材分析

(1)知识结构:

(2)重点和难点分析:

重点:的有关概念及内角和定理.因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.

难点:的概念及不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点.

2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣.

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立的有关概念,如的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、的图形,对比着指给学生看,让学生明确这些概念.

(3)因为在三角形中没有对角线,所以的对角线是一个新概念,它是解决问题时常用的辅助线,通过它可以把问题转化为三角形问题来解决.结合图形,让学生自己动手作的一条对角线,并观察的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识.

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题.

一、素质教育目标

(一)知识教学点

1.使学生掌握的有关概念及的内角和外角和定理.

2.了解的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的.

4.讲解外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:及其有关概念;熟练推导外角和这一结论,并用此结论解决与内外角有关计算问题.

2.教学难点:理解的有关概念中的一些细节问题;不稳定性的理解和应用.

3.疑点及解决办法:的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出有关概念;师生共同推导内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第一课时

七、教学步骤

【复习引入】

在小学里已经对、长方形、平形的有关知识有所了解,但还很肤浅,这一

章我们将比较系统地学习各种的性质和判定分析它们之间的关系,并运用有关的知识解决一些新问题.

【引入新课】

用投影仪打出课前画好的教材中P119的图.

师问:在上图中你能把知道的长方形、正方形、平行、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

【讲解新课】

1.的有关概念

结合图形讲解,的边、顶点、角,凸,的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形.

(2)要与三角形类比.

(3)讲清定义中的关键词语.如定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

(4)强调对角线的作用,作为的一种常用的辅助线,通过它可以把问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原的关系.

(5)强调的表示方法,一定要按顶点顺序书写如图4—1.

(6)在判断一个是不是凸时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

2.内角和定理

教师问:

(1)在图4-3中对角线AC把ABCD分成几个三角形?

(2)在图4-6中两条对角线AC和BD把分成几个三角形?

(3)若在ABCD如图4-7内任取一点O,从O向四个顶点作连线,把分成几个三角形.

我们知道,三角形内角和等于180°,那么的内角和就等于:

①2×180°=360°如图4—6;

②4×180°-360°=360°如图4-7.

例1已知:如图4—8,直线于B、于C.

求证:(1);(2).

本例题是内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

【总结、扩展】

1.的有关概念.

2.对角线的作用.

3.内角和定理.

八、布置作业

教材P128中1(1)、2、3.

九、板书设计

(一)

有关概念

内角和

例1

十、随堂练习

教材P122中1、2、3.

jK251.COm精选阅读

圆内接四边形的教学方案


圆内接四边形

执教者:刁正久

一、教学目标:

掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。

二、教学重点和难点:

重点:圆内接四边形的性质定理。

难点:圆内接四边形性质定理的准确、灵活应用。

三、教学过程:

1、带领学生复习圆内接三角形和三角形的外接圆的概念。

2、利用几何画板:

①②(1)探索:如图,点D在⊙O上(和A、C不重合)移动,试讨论∠D和∠B的大小关系?

(学生对第一种情况比较熟悉,但对于第二种情况做适当的提示:利用几何画板把D点在圆上移动!)

通过学生的思维,可归纳出∠D和∠B的大小关系是互补。

利用此时的几何图形,由学生模仿圆内接三角形的定义得到圆内接四边形的概念并用电脑加以显示。立即让学生利用给出的圆内接四边形的定义把刚才的结论重新归纳,从而得到定理:

圆内接四边形的对角互补。(书写符号语言)

(2)对定理进行巩固

①如图,四边形ABCD为⊙O的内接四边形,

已知∠BOD=140°,则∠BAD=°∠BCD=°

②如图,已知AB是圆O的直径,∠BAC=40°,D是弧AB上的任意一点,那么∠D的度数是°

(3)外角的引入

紧接着前面的练习,和学生共同研究探索题:

(对于上面的探究性应用题,针对不同层次的学生都可以得到一定的发挥)

当学生最后得到∠E的度数后,立即提问:

从∠A=70°到求出∠E=110°,在整个过程中,哪个角起了关键的作用?从而把学生的注意力转向外角∠DCF(目的是让学生明白学习定理的原因)并且引导学生讨论∠DCF和∠A的大小关系?从而得到∠DCF=∠A的结论。利用几何画板的优势,隐藏⊙O2和线段DE、EF得到外角的基本图形

再引导学生得出外角和内对角的定义,让学生把刚才的结论归纳成定理即:圆内接四边形的任何一个外角都等于它的内对角。

(书写符号语言)

(4)对定理进行必要的巩固练习

如图,⊙O1和⊙O2都经过A、B两点,图中有两组相等的角,每组有三只角相等,你发现了吗?

(5)讲解例题:

如图,⊙O1和⊙O2都经过A、B两点,经过点A的直线与⊙O1相交于点C,与⊙O2相交于点D,经过点B的直线与⊙O1相交于点E,与⊙O2相交于点F.试猜想CE和DF有何特殊的位置关系?并加以证明。

(突出作辅助线的必要性,并在黑板上书写过程)

3、课堂小结:

通过本节课的学习,你学会了那些知识点?(学生完成)

4、课堂练习:

①②

(1)如图,已知∠BAE=125°,则∠BCD=°∠BOD=°

(2)如图,已知在圆的内接四边形中,AB=AC,E是CD延长线上一点,你能猜想出∠ADE和∠ADB的大小关系吗?并证明。

(3)探索:

圆内接平行四边形是什么特殊的四边形?

(给学生一定的时间思考,然后充分利用几何画板,让学生自己上前去操作电脑拖动鼠标移动平行四边形,调动学生思维的积极性,并且让学生的思维得到了充分的展示)

思考:

你能说出下面图中有几对相似三角形吗?并说出其中一对相似三角形的证明过程。

(4)

5、布置作业:P86—15、16、17

注:参加2003年12月区评优课比赛并获一等奖

圆内接四边形

执教者:刁正久

一、教学目标:

掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。

二、教学重点和难点:

重点:圆内接四边形的性质定理。

难点:圆内接四边形性质定理的准确、灵活应用。

三、教学过程:

1、带领学生复习圆内接三角形和三角形的外接圆的概念。

2、利用几何画板:

①②(1)探索:如图,点D在⊙O上(和A、C不重合)移动,试讨论∠D和∠B的大小关系?

(学生对第一种情况比较熟悉,但对于第二种情况做适当的提示:利用几何画板把D点在圆上移动!)

通过学生的思维,可归纳出∠D和∠B的大小关系是互补。

利用此时的几何图形,由学生模仿圆内接三角形的定义得到圆内接四边形的概念并用电脑加以显示。立即让学生利用给出的圆内接四边形的定义把刚才的结论重新归纳,从而得到定理:

圆内接四边形的对角互补。(书写符号语言)

(2)对定理进行巩固

①如图,四边形ABCD为⊙O的内接四边形,

已知∠BOD=140°,则∠BAD=°∠BCD=°

②如图,已知AB是圆O的直径,∠BAC=40°,D是弧AB上的任意一点,那么∠D的度数是°

(3)外角的引入

紧接着前面的练习,和学生共同研究探索题:

(对于上面的探究性应用题,针对不同层次的学生都可以得到一定的发挥)

当学生最后得到∠E的度数后,立即提问:

从∠A=70°到求出∠E=110°,在整个过程中,哪个角起了关键的作用?从而把学生的注意力转向外角∠DCF(目的是让学生明白学习定理的原因)并且引导学生讨论∠DCF和∠A的大小关系?从而得到∠DCF=∠A的结论。利用几何画板的优势,隐藏⊙O2和线段DE、EF得到外角的基本图形

再引导学生得出外角和内对角的定义,让学生把刚才的结论归纳成定理即:圆内接四边形的任何一个外角都等于它的内对角。

(书写符号语言)

(4)对定理进行必要的巩固练习

如图,⊙O1和⊙O2都经过A、B两点,图中有两组相等的角,每组有三只角相等,你发现了吗?

(5)讲解例题:

如图,⊙O1和⊙O2都经过A、B两点,经过点A的直线与⊙O1相交于点C,与⊙O2相交于点D,经过点B的直线与⊙O1相交于点E,与⊙O2相交于点F.试猜想CE和DF有何特殊的位置关系?并加以证明。

(突出作辅助线的必要性,并在黑板上书写过程)

3、课堂小结:

通过本节课的学习,你学会了那些知识点?(学生完成)

4、课堂练习:

①②

(1)如图,已知∠BAE=125°,则∠BCD=°∠BOD=°

(2)如图,已知在圆的内接四边形中,AB=AC,E是CD延长线上一点,你能猜想出∠ADE和∠ADB的大小关系吗?并证明。

(3)探索:

圆内接平行四边形是什么特殊的四边形?

(给学生一定的时间思考,然后充分利用几何画板,让学生自己上前去操作电脑拖动鼠标移动平行四边形,调动学生思维的积极性,并且让学生的思维得到了充分的展示)

思考:

你能说出下面图中有几对相似三角形吗?并说出其中一对相似三角形的证明过程。

(4)

5、布置作业:P86—15、16、17

注:参加2003年12月区评优课比赛并获一等奖

平行四边形的判定的教学方案


七、教学步骤

【引入新课】

由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题).

【讲解新课】

(1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形.

引导学生结合图1,把已知,求证具体化.

分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现.

证明:(由学生口述)

师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出.

(2)平行四边形判定等知识的综合应用

教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的.因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视.

例2已知:,分别是、的中点,结合图1,求证:.

分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形为平行四边形(显然后者较前者简单)

证明:(略).

此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路.

例3画,使,,

(按课本讲)

【总结、扩展】

1.小结

平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题.

2.思考题:

已知:如图1,在△中,,.

求证:

八、布置作业

教材P143中11、12,P144中13、14

九、板书设计

十、背景知识与课外阅读

美妙的莫雷定理

已知:如图1,和,和,和分别为△的、、的三等分线.

求证:∠△是正三角形.

这是英国数学家富兰克·莫雷在1899年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一.

十一、随堂练习

教材P140中1、2

补充:判断

(1)一组对边平行,一组对边相等的四边形是平行四边形()

(2)一组对角平行,一组对角相等的四边形是平行四边形()

(3)一组对边相等,一组对角相等的四边形是平行四边形()

(4)一组对边平行且相等的四边形是平行四边形()

平行四边形及其性质的教学方案


教学建议

1.知识结构

2.重点和难点分析

重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理2的推论,推论的应用有两个条件:一个是夹在两条平行线间;一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.

难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.

3.教法建议

(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.

(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.

(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.

第一课时

一、素质教育目标

(一)知识教学点

1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.

2.掌握平行四边形的性质定理1、2.

3.并能运用这些知识进行有关的证明或计算.

(二)能力训练点

1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.

2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.

(三)德育渗透点

通过要求学生书写规范,培养学生科学严谨的学风.

(四)美育渗透点

通过学习,渗透几何方法美和几何语言美及图形内在美和结构美

二、学法引导

阅读、思考、讲解、分析、转化

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形性质定理的应用

2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.

3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.

四、课时安排

2课时

五、教具学具准备

教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具

六、师生互动活动设计

教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习

第一课时

七、教学步骤

【复习提问】

1.什么叫做四边形?什么叫四边形的一组对边?

2.四边形的两组对边在位置上有几种可能?

(教师随着学生回答画出图1)

图1

【引入新课】

在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).

【讲解新课】

1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.

注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.

2.平行四边形的表示:平行四边形用符号“”表示,如图1就是平行四边形,记作“”.

图1

3.平行四边形的性质

讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.

平行四边形性质定理1:平行四边形的对角相等.

平行四边形性质定理2:平行四边形对边相等.

(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)

图2

如图3,,.

所以四边形是平行四边形,所以.

由此得到

推论:夹在两条平行线间的平行线段相等.

图3要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出.

图4

4.平行线间的距离

从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.

我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.

图5

注意:(1)两相交直线无距离可言.

(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.

例1已知:如图1,,.

求证:(1);;.

(2)△的顶点分别是△各边的中点(证法略),课堂提问(投影打出).图1

①平行四边形两邻边的比为2:5,周长为28cm,则四条边长分别为___________.

②在中,若,则,.

【总结、扩展】

1.小结

本堂所讲的主要内容有

(1)平行四边形的概念,要理解这个概念的实质.

(2)平行四边形的部分性质.

①关于边的:对边平行;对边相等.

②关于角的:对角相等;邻角互补.

(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.

2.思考:如图.已知:平面,,求证:.

八、布置作业

教材P141.2(1)、(2)、(3)P142中3(1)

九、板书设计

十、随堂练习

教材P.133中1、2、3

补充1.在中(1)若,则度,度,度;(2)若,则度,度;(3)若,则度,度.

2.中,周长为,△的周长比△周长多则,.

3.中,的平分线分为长是和的两线段则的周长是___________cm.

圆内接四边形


圆内接四边形

执教者:刁正久

一、教学目标:

掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。

二、教学重点和难点:

重点:圆内接四边形的性质定理。

难点:圆内接四边形性质定理的准确、灵活应用。

三、教学过程:

1、带领学生复习圆内接三角形和三角形的外接圆的概念。

2、利用几何画板:

①②(1)探索:如图,点D在⊙O上(和A、C不重合)移动,试讨论∠D和∠B的大小关系?

(学生对第一种情况比较熟悉,但对于第二种情况做适当的提示:利用几何画板把D点在圆上移动!)

通过学生的思维,可归纳出∠D和∠B的大小关系是互补。

利用此时的几何图形,由学生模仿圆内接三角形的定义得到圆内接四边形的概念并用电脑加以显示。立即让学生利用给出的圆内接四边形的定义把刚才的结论重新归纳,从而得到定理:

圆内接四边形的对角互补。(书写符号语言)

(2)对定理进行巩固

①如图,四边形ABCD为⊙O的内接四边形,

已知∠BOD=140°,则∠BAD=°∠BCD=°

②如图,已知AB是圆O的直径,∠BAC=40°,D是弧AB上的任意一点,那么∠D的度数是°

(3)外角的引入

紧接着前面的练习,和学生共同研究探索题:

(对于上面的探究性应用题,针对不同层次的学生都可以得到一定的发挥)

当学生最后得到∠E的度数后,立即提问:

从∠A=70°到求出∠E=110°,在整个过程中,哪个角起了关键的作用?从而把学生的注意力转向外角∠DCF(目的是让学生明白学习定理的原因)并且引导学生讨论∠DCF和∠A的大小关系?从而得到∠DCF=∠A的结论。利用几何画板的优势,隐藏⊙O2和线段DE、EF得到外角的基本图形

再引导学生得出外角和内对角的定义,让学生把刚才的结论归纳成定理即:圆内接四边形的任何一个外角都等于它的内对角。

(书写符号语言)

(4)对定理进行必要的巩固练习

如图,⊙O1和⊙O2都经过A、B两点,图中有两组相等的角,每组有三只角相等,你发现了吗?

(5)讲解例题:

如图,⊙O1和⊙O2都经过A、B两点,经过点A的直线与⊙O1相交于点C,与⊙O2相交于点D,经过点B的直线与⊙O1相交于点E,与⊙O2相交于点F.试猜想CE和DF有何特殊的位置关系?并加以证明。

(突出作辅助线的必要性,并在黑板上书写过程)

3、课堂小结:

通过本节课的学习,你学会了那些知识点?(学生完成)

4、课堂练习:

①②

(1)如图,已知∠BAE=125°,则∠BCD=°∠BOD=°

(2)如图,已知在圆的内接四边形中,AB=AC,E是CD延长线上一点,你能猜想出∠ADE和∠ADB的大小关系吗?并证明。

(3)探索:

圆内接平行四边形是什么特殊的四边形?

(给学生一定的时间思考,然后充分利用几何画板,让学生自己上前去操作电脑拖动鼠标移动平行四边形,调动学生思维的积极性,并且让学生的思维得到了充分的展示)

思考:

你能说出下面图中有几对相似三角形吗?并说出其中一对相似三角形的证明过程。

(4)

5、布置作业:P86—15、16、17

注:参加2003年12月区评优课比赛并获一等奖

四边形教案模板


一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第2课时

七、教学步骤

【复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9,求的度数(打出投影).

【引入新课】

前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,

为什么?下面就来研究这些问题.

【讲解新课】

1.四边形的外角

与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.

2.外角和定理

例1已知:如图4-11,四边形ABCD的四个内角分别为,每一个顶点处有一个外角,设它们分别为.

求.

(l)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).

(2)教给学生一组外角的画法——同向法.

即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.

(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

证得:

360°

外角和定理:四边形的外角和等于360°

3.四边形的不稳定性

①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?

(学生回答)

②若以为边作四边形ABCD.

提示画法:①画任意小于平角的.

②在的两边上截取.

③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.

④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.

大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为的大小不固定,所以四边形的形状不确定.

③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.

教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.

(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际

的教育.

【总结、扩展】

1.小结:

(1)四边形外角概念、外角和定理.

(2)四边形不稳定性的应用和克服不稳定性的理论根据.

2.扩展:如图4-15,在四边形ABCD中,,求四边形ABCD的面积

八、布置作业

教材P128中4.

九、板书设计

十、随堂练习

教材P124中1、2

补充:(1)在四边形ABCD中,,是四边形的外角,且,则度.

(2)在四边形ABCD中,若分别与相邻的外角的比是1:2:3:4,则度,度,度,度

(3)在四边形的四个外角中,最多有________个钝角,最多有________个锐角,最多有________个直角.

数学教案-四边形


一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点难点疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第2课时

七、教学步骤

【复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9,求的度数(打出投影).

【引入新课】

前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,

为什么?下面就来研究这些问题.

【讲解新课】

1.四边形的外角

与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.

2.外角和定理

例1已知:如图4-11,四边形ABCD的四个内角分别为,每一个顶点处有一个外角,设它们分别为.

求.

(l)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).

(2)教给学生一组外角的画法——同向法.

即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.

(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

证得:

360°

外角和定理:四边形的外角和等于360°

3.四边形的不稳定性

①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?

(学生回答)

②若以为边作四边形ABCD.

提示画法:①画任意小于平角的.

②在的两边上截取.

③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.

④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.

大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为的大小不固定,所以四边形的形状不确定.

③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.

教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.

(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际

的教育.

【总结、扩展】

1.小结:

(1)四边形外角概念、外角和定理.

(2)四边形不稳定性的应用和克服不稳定性的理论根据.

2.扩展:如图4-15,在四边形ABCD中,,求四边形ABCD的面积

八、布置作业

教材P128中4.

九、板书设计

十、随堂练习

教材P124中1、2

补充:(1)在四边形ABCD中,,是四边形的外角,且,则度.

(2)在四边形ABCD中,若分别与相邻的外角的比是1:2:3:4,则度,度,度,度

(3)在四边形的四个外角中,最多有________个钝角,最多有________个锐角,最多有________个直角.

四边形相关教学方案


一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第2课时

七、教学步骤

【复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9,求的度数(打出投影).

【引入新课】

前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,

为什么?下面就来研究这些问题.

【讲解新课】

1.四边形的外角

与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.

2.外角和定理

例1已知:如图4-11,四边形ABCD的四个内角分别为,每一个顶点处有一个外角,设它们分别为.

求.

(l)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).

(2)教给学生一组外角的画法——同向法.

即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.

(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

证得:

360°

外角和定理:四边形的外角和等于360°

3.四边形的不稳定性

①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?

(学生回答)

②若以为边作四边形ABCD.

提示画法:①画任意小于平角的.

②在的两边上截取.

③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.

④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.

大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为的大小不固定,所以四边形的形状不确定.

③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.

教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.

(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际

的教育.

【总结、扩展】

1.小结:

(1)四边形外角概念、外角和定理.

(2)四边形不稳定性的应用和克服不稳定性的理论根据.

2.扩展:如图4-15,在四边形ABCD中,,求四边形ABCD的面积

八、布置作业

教材P128中4.

九、板书设计

十、随堂练习

教材P124中1、2

补充:(1)在四边形ABCD中,,是四边形的外角,且,则度.

(2)在四边形ABCD中,若分别与相邻的外角的比是1:2:3:4,则度,度,度,度

(3)在四边形的四个外角中,最多有________个钝角,最多有________个锐角,最多有________个直角.

本文网址:http://m.jk251.com/jiaoan/7288.html

相关文章
最新更新

热门标签