知识结构
重点与难点分析:
本节内容的重点是角平分线的性质定理,逆定理及它们的应用。性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。
本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。对于原命题和逆命题,学生对条件和结论容易混淆,特别是没有明显的提示语言时,更易找不准条件和结论,这就成了教学的难点。
教法建议:
整堂课围绕“以复习为基础,以过程为主线,以思维为中心,以训练为手段”开展教学。注重学生的参与度,通过提问、板演、讨论等多种形式,让学生直接参加课堂活动,将教与学融为一体。具体说明如下:
(1)做好铺垫
新课引入前,作一个具体画图的练习:已知角画出它的角平分线;然后在平分线上任取一点,作出这一点到角两边的距离。这样做一是复习了角平分线的定义和点到直线距离的定义;二是为本节课的学习奠定了图形基础。
(2)主动获取
利用上面的图形,观察这两个距离的关系,并证明自己的结论。对基础条件比较好的同学会很容易得出结论并能用文字叙述出来。对基础稍差一些的同学生得出结论并不难但让他们用文字叙述出来可能不是很准确,此时教师要做指导。这一环节的教学注意让学生通过观察、分析、推理等活动,主动提出此定理。
(3)激荡思维
在上面定理的基础上,让学找出此定理的条件与结论,并交换条件与结论得到一个新的命题,然后验证此命题的正确性如何?学生通过推理证明不难得到是一个真命题。此时顺理成章地引出教材中的定理2。最后注意强调:两个定理的区别与联系;原命题与逆命题、原定理与逆定理的关系及写出一个命题的逆命题的方法步骤。这一环节完全是由学生给出定理的文字表述及证明过程。
(4)推向深入
进行必要的例题讲解,然后进行有层次阶梯性训练,以达到熟练地运用定理证明有关问题。教学时,要注意引导学生分析问题解决问题的思考方法。同时让学生总结积累证明线段相等、角相等的常见方法。
教学目标:
1、知识目标:
(1)掌握角平分线的性质定理和逆定理;
(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;
(3)能够判定两个命题是否为互逆命题,并能写出一个命题的逆命题.
2、能力目标:
(1)通过“判断题”的练习,提高学生的辨析能力;
(2)通过公理的初步应用,培养学生的逻辑推理能力及创新的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征。
教学重点:角平分线的性质定理,逆定理及它们的应用。
教学难点:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。。
教学用具:直尺,微机
教学方法:谈话法
教学过程:
1、新课引入
投影显示
问题:(1)画一个;
(2)在这条平分线上任取一点P,标出P点到角两边的距离。
(3)说出这两段距离的关系并证明。
2、定理的获得
让学生用文字语言叙述出定理的内容
角平分线的性质定理:在角平分线上的点到这个角两边距离相等。
强调说明:
(1)、定理的条件及结论的符号表示;
(2)、定理的作用:直接证明两线段相等。使用的前提是有,关键是图中是否有“垂直”。
3、运用逆向思维,导出定理的逆定理
问题:将定理的条件与结论“换位”得到一个新命题,说出这个新命题的内容,并判断命题是真命题还是假命题?学生分析、讨论用文字叙述内容,老师作必要的提示。
逆定理:到一个角的两边距离相等的点,在这个上。
强调:a逆定理的作用:证明角相等
b、二定理的区别与联系:性质定理说明了角平分线上点的纯粹性,即:只要是角平分线上的点,它到此角两边一定等距离,而无一例外;判定定理反映了角平分线的完备性,即只要是到角两边距离相等的点,都一定在角平分线上,而绝不会漏掉一个。实际应用中,前者用来证明线段相等,后者用来证明角相等(角平分线)
4、原命题与逆命题
a、概念
b、写出互逆命题的关键。
c、原使命与逆使命的真假性并无一定的依存关系。
5、定理的应用(投影四个例题)
第12页
3.9角的平分线
教学目标
1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.
2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.
3.渗透角平分线是满足特定条件的点的集合的思想。
教学重点和难点
角平分线的性质定理和逆定理的应用是重点.
性质定理和判定定理的区别和灵活运用是难点.
教学过程设计
一、角平分钱的性质定理与判定定理的探求与证明
1,复习引入课题.
(1)提问关于直角三角形全等的判定定理.
(2)让学生用量角器画出图3-86中的∠AOB的角
平分线OC.
2.画图探索角平分线的性质并证明之.
(1)在图3-86中,让学生在角平分线OC上任取一
点P,并分别作出表示P点到∠AOB两边的距离的线段
PD,PE.
(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知的依据.
本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
2、教法建议
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
教学目标:
1、知识目标:
(1)掌握的性质定理及其逆定理;
(2)能运用它们证明两条线段相等或两条直线互相垂直;
2、能力目标:
(1)通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
(2)提高综合运用知识的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;;
(2)通过知识的纵横迁移感受数学的辩证特征.
教学重点:线段垂直平分线定理及其逆定理
教学难点:定理及逆定理的关系
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习
(1)线段垂直平分线的概念
(2)问题:(投影显示)
如图,CD是线段AB的垂直平分线,P为CD上任意一点,PA、PB有何关系?为什么?
整个过程,由学生完成.找一名学生代表回答上述问题并
投影显示学生的证明过程.
2、定理的获得
让学生用文字语言将上述问题表述出来.
定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
强调说明:线段垂直平分线性质定理是证明线段相等的一条依据,在计算、作图中也有重要作用.
学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、逆定理的获得
类比角平分线逆定理获得的过程,让学生讲解下一环节所要学习研究的内容.
这一过程,完全由学生自己通过小组的形式,代表到台前讲解.
逆定理:和一条线段两个端点距离相等的点,在这条上.
强调说明:定理与逆定理的联系与区别
相同点:结构相同、证明方法相同
不同点:用途不同,定理是用来证线段相等
4、定理与逆定理的应用
(1)讲解例1(投影例1)
例1如图,△ABC中,∠C=,∠A=,AB的在垂线交AC于D,交AB于E
求证:AC=3CD
证明:∵DE垂直平分AB
∴AD=BD
∴∠1=∠A=
∵
∴∠2=
∴CD=BD
∴CD=AD
∴AD=2CD
即AC=3CD
讲解例2(投影例2)
例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为,求底角B的大小.
(学生思考、分析、讨论,教师巡视,适当参与讨论)
解:(1)当AB的中垂线MN与AC相交时,如图(1),
∵∠ADE=,∠AED=
∴∠A=-∠AED=-=
∵AB=AC∴∠B=∠C
∴∠B=
(2)当的中垂线与的延长线相交时,如图(2)
∵∠ADE=,∠AED=
∴∠BAE=-∠AED=-=
∵AB=AC∴∠B=∠C
∴∠B=
例3(1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=,求∠NMB的大小
(2)如果将(1)中∠A的度数改为,其余条件不变,再求∠NMB的大小
(3)你发现有什么样的规律性?试证明之.
(4)将(1)中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改
解:(1)∵AB=AC
∴∠B=∠ACB
∴∠B=
∵∠BNM=
∴
(2)如图,同(1)同理求得
(3)如图,∠NMB的大小为∠A的一半
5、课堂小结:
(1)线段垂直平分线性质定理和逆定理
(2)在应用时,易忽略直接应用,往往又重新证三角形的全等,使计算或证明复杂化.
6、布置作业:
书面作业P119#2、3
思考题:已知:如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高
求证:AD垂直平分EF
证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF
∴D在线段EF的垂直平分线上
在Rt△ADE和Rt△ADF中
∴Rt△ADE≌Rt△ADF
∴AE=AF
∴A点也在线段EF的垂直平分线上
∵两点确定一条直线
∴直线AD就是线段EF的垂直平分线
板书设计:
本文网址:http://m.jk251.com/jiaoan/7469.html
上一篇:花的勇气 教案精选