教学目标
知识目标
1、知道摩尔气体常量.了解克拉珀龙方程的推导过程.
2、在理解克拉珀龙方程内容的基础上学会方程的应用.
3、进一步强化对气体状态方程的应用.
能力目标
通过克拉珀龙方程的推导,培养学生对问题的分析、推理、综合能力.
情感目标
通过对不同类型题目的练习,引导学生自己分析研究和归纳出解题方法并根据实验选用不同的气体状态方程的表达式,培养其分析和判断能力.
教学建议
教材分析
气体实验定律和克拉珀龙方程都是气体的状态方程,其区别仅在于再实验定律中未知的常量C,再克拉珀龙方程中得到了具体的表述,即,因此,对处在某种状态下的一定质量的某种气体来说,借助普适气体常量,在已知两个状态参量的情况下便可以由克拉珀龙方程直接求出第三个参量,而无需另一个状态的参与,所以运用克拉珀龙方程解题不涉及过程问题,对于解决变质量问题尤为方便.
教法建议
在教师讲解克拉珀龙方程时,要让学生深刻理解普适常量的物理意义,注意普适常量的单位.
在应用方程解题时,注意单位必须是统一的国际单位制.
教学设计方案
教学过程总体设计
1、老师复习前面知识引入,通过提问启发学生理解克拉珀龙方程的推导.
2、学生积极思考、讨论,推导克拉珀龙方程并掌握其应用.
(一)教学重点、难点以及相应的解决办法
1、重点:克拉珀龙方程的推导和内容.
2、难点:在用克拉珀龙方程解题时如何根据题意选好研究对象,找出等量关系(列方程).
3、疑点:摩尔气体常量为什么与气体的质量和种类无关.
解决办法:明确研究对象,并把作为研究对象的气体所发生的过程弄清楚.
(二)教具学具:投影片
(三)师生互动活动设计
让学生先回顾一些基本常数,结合气态方程在老师引导下推导克拉珀龙方程,并利用所学规律解题.
(四)教学步骤
本节利用前面学过的知识推导克拉珀龙方程,并用克拉珀龙方程解题,与以前学过的方法比较,归纳解题方法,是热力学中最重要的一节.
1、摩尔气体常量
问:理想气体状态方程(常量)中的常量C与什么因素有关?
答:实验表明,常量C与气体的质量和种类有关.
问:对1mol的某种气体,常量C应为多少?
∵1mol的气体,在标准状态下:
——摩尔气体常量.
对于1mol的理想气体:
——1mol理想气体的状态方程.
2、克拉珀龙方程
对于nmol的理想气体:
即
或(m为气体的质量,M为气体的摩尔质量)克拉珀龙方程.
3、克拉珀龙方程的应用
例题讲解(参考备课资料中的典型例题)
4、总结、扩展
(1)克拉珀龙方程的推导
由(恒量)
当m、M一定时——一定质量的理想气体状态方程
当m、M、T一定时——玻意耳定律
当m、M、T一定时——查理定律
当m、M、p一定时——盖·吕萨克定律
因此,克拉珀龙方程既反映了理想气体在某一状态各参量的关系,也可以得出气体在两个状态下各气体状态参量的关系,所以,它包括了本章的所有规律,是本章的核心,把克拉珀龙方程与化学知识相结合,可编写理化综合题对考生考查.
(2)关于图像研究克拉珀龙方程
由克拉珀龙方程,可得三条等值线对应的函数关系分别为:
、、.
气体状态变化图线包括图、图和图三种图线,所有题中有以下形式:
①三种图线的相互转换;
②由图线的物理意义确定气体的三个状态参量的关系;
③结合围绕判断气体状态变化过程中的内能变化情况,在这些题型中,求解时首先要清楚各种图线的物理意义,再结合三个实验定律、气体状态方程,克拉珀龙方程以及热力学第一定律求解即可.
理想气体的状态方程
一、教学目标
1、知识目标:
(1)理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2、能力目标
通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3、情感目标
通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、重点、难点分析
1、理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2、对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具
1、投影幻灯机、书写用投影片。
2、气体定律实验器、烧杯、温度计等。
四、主要教学过程
(一)引入新课
玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计
1、关于“理想气体”概念的教学
设问:
(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由
实验总结归纳得出来的?答案是:由实验总结归纳得出的。
(2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。
老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。这就是说,当温度足够低或压强足够大时,任何气体都被液化了,
当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。
出示投影片(1):
p
(Pa)
pV值(PaL)
空气
1
100
200
500
1000
1.000
1.0690
1.1380
1.3565
1.7200
1.000
0.9941
1.0483
1.3900
2.0685
1.000
0.9265
0.9140
1.1560
1.7355
1.000
0.9730
1.0100
1.3400
1.9920
说明讲解:投影片(l)所示是在温度为0℃,压强为Pa的条件下取1L几种常见实际气体保持温度不变时,在不同压强下用实验测出的pV乘积值。从表中可看出在压强为Pa至Pa之间时,实验结果与玻意耳定律计算值,近似相等,当压强为Pa时,玻意耳定律就完全不适用了。
这说明实际气体只有在一定温度和一定压强范围内才能近似地遵循玻意耳定律和查理定律。而且不同的实际气体适用的温度范围和压强范围也是各不相同的。为了研究方便,我们假设这样一种气体,它在任何温度和任何压强下都能严格地遵循玻意耳定律和查理定律。我们把这样的气体叫做“理想气体”。(板书“理想气体”概念意义。)
2.推导理想气体状态方程
前面已经学过,对于一定质量的理想气体的状态可用三个状态参量p、V、T来描述,且知道这三个状态参量中只有一个变而另外两个参量保持不变的情况是不会发生的。换句话说:若其中任意两个参量确定之后,第三个参量一定有唯一确定的值。它们共同表征一定质量理想气体的唯一确定的一个状态。根据这一思想,我们假定一定质量的理想气体在开始状态时各状态参量为(),经过某变化过程,到末状态时各状态参量变为(),这中间的变化过程可以是各种各样的,现假设有两种过程:
第一种:从()先等温并使其体积变为,压强随之变为,此中间状态为()再等容并使其温度变为,则其压强一定变为,则末状态()。
第二种:从()先等容并使其温度变为,则压强随之变为,此中间状态为(),再等温并使其体积变为,则压强也一定变为,也到末状态(),如投影片所示。
出示投影片(2):
将全班同学分为两大组,根据玻意耳定律和查理定律,分别按两种过程,自己推导理想气体状态过程。(即要求找出与间的等量关系。)
基本方法是:解联立方程或消去中间状态参量或均可得到:
这就是理想气体状态方程。它说明:一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
3.推导并验证盖·吕萨克定律
设问:(1)若上述理想气体状态方程中,,方程形式变化成怎样的形式?
答案:或
(2)本身说明气体状态变化有什么特点?
答案:说明等效地看作气体做等压变化。(即压强保持不变的变化)
由此可得出结论:当压强不变时,一定质量的理想气体的体积与热力学温度成正比。
这个结论最初是法国科学家盖·吕萨克在研究气体膨胀的实验中得到的,也叫盖·吕萨克定律。它也属于实验定律。当今可以设计多种实验方法来验证这一结论。今天我们利用在验证玻意耳定律中用过的气体定律实验器来验证这一定律。
演示实验:实验装置如图所示,此实验保持压强不变,只是利用改变烧杯中的水温来确定三个温度状态,这可从温度计上读出,再分别换算成热力学温度,再利用气体实验器上的刻度值作为达热平衡时,被封闭气体的体积值,分别为,填入下表:
出示投影幻灯片(3):
然后让学生用计算器迅速算出、、,只要读数精确,则这几个值会近似相等,从而证明了盖·吕萨克定律。
4.课堂练习
出示投影幻灯片(4),显示例题(1):
例题一水银气压计中混进了空气,因而在27℃,外界大气压为758毫米汞柱时,这个水银气压计的读数为738毫米汞柱,此时管中水银面距管顶80毫米,当温度降至-3℃时,这个气压计的读数为743毫米汞柱,求此时的实际大气压值为多少毫米汞柱?
教师引导学生按以下步骤解答此题:
(1)该题研究对象是什么?
答案:混入水银气压计中的空气。
(2)画出该题两个状态的示意图:
(3)分别写出两个状态的状态参量:
(S是管的横截面积)。
(4)将数据代入理想气体状态方程:
得
解得
(三)课堂小结
1.在任何温度和任何压强下都能严格遵循气体实验定律的气体叫理想气体。
2.理想气体状态方程为:
3.盖·吕萨克定律是指:一定质量的气体在压强不变的条件下,它的体积与热力学温度成正比。
五、说明
1.“理想气体”如同力学中的“质点”、“弹簧振子”一样,是一种理想的物理模型,是一种重要的物理研究方法。对“理想气体”研究得出的规律在很大温度范围和压强范围内都能适用于实际气体,因此它是有很大实际意义的。
2.本节课设计的验证盖·吕萨克定律的实验用的是温州师院教学仪器厂制造的J2261型气体定律实验器;实验中确定的三个温度状态应相对较稳定(即变化不能太快)以便于被研究气体与烧杯中的水能达稳定的热平衡状态,使读数较为准确。建议选当时的室温为,冰水混合物的温度,即0℃或0℃附近的温度为,保持沸腾状态的温度,即100℃或接近100℃为。这需要教师在课前作充分的准备,才能保证在课堂得出较理想的结论。作者做的一组实验值如下表所示,供参考。
室温℃
℃
℃
K
K
K
理想气体的状态方程
一、教学目标
1、知识目标:
(1)理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2、能力目标
通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3、情感目标
通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、重点、难点分析
1、理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2、对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具
1、投影幻灯机、书写用投影片。
2、气体定律实验器、烧杯、温度计等。
四、主要教学过程
(一)引入新课
玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计
1、关于“理想气体”概念的教学
设问:
(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由
实验总结归纳得出来的?答案是:由实验总结归纳得出的。
(2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。
老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。这就是说,当温度足够低或压强足够大时,任何气体都被液化了,
当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。
出示投影片(1):
p
(Pa)
pV值(PaL)
空气
1
100
200
500
1000
1.000
1.0690
1.1380
1.3565
1.7200
1.000
0.9941
1.0483
1.3900
2.0685
1.000
0.9265
0.9140
1.1560
1.7355
1.000
0.9730
1.0100
1.3400
1.9920
说明讲解:投影片(l)所示是在温度为0℃,压强为Pa的条件下取1L几种常见实际气体保持温度不变时,在不同压强下用实验测出的pV乘积值。从表中可看出在压强为Pa至Pa之间时,实验结果与玻意耳定律计算值,近似相等,当压强为Pa时,玻意耳定律就完全不适用了。
这说明实际气体只有在一定温度和一定压强范围内才能近似地遵循玻意耳定律和查理定律。而且不同的实际气体适用的温度范围和压强范围也是各不相同的。为了研究方便,我们假设这样一种气体,它在任何温度和任何压强下都能严格地遵循玻意耳定律和查理定律。我们把这样的气体叫做“理想气体”。(板书“理想气体”概念意义。)
2.推导理想气体状态方程
前面已经学过,对于一定质量的理想气体的状态可用三个状态参量p、V、T来描述,且知道这三个状态参量中只有一个变而另外两个参量保持不变的情况是不会发生的。换句话说:若其中任意两个参量确定之后,第三个参量一定有唯一确定的值。它们共同表征一定质量理想气体的唯一确定的一个状态。根据这一思想,我们假定一定质量的理想气体在开始状态时各状态参量为(),经过某变化过程,到末状态时各状态参量变为(),这中间的变化过程可以是各种各样的,现假设有两种过程:
第一种:从()先等温并使其体积变为,压强随之变为,此中间状态为()再等容并使其温度变为,则其压强一定变为,则末状态()。
第二种:从()先等容并使其温度变为,则压强随之变为,此中间状态为(),再等温并使其体积变为,则压强也一定变为,也到末状态(),如投影片所示。
出示投影片(2):
将全班同学分为两大组,根据玻意耳定律和查理定律,分别按两种过程,自己推导理想气体状态过程。(即要求找出与间的等量关系。)
基本方法是:解联立方程或消去中间状态参量或均可得到:
这就是理想气体状态方程。它说明:一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
3.推导并验证盖·吕萨克定律
设问:(1)若上述理想气体状态方程中,,方程形式变化成怎样的形式?
答案:或
(2)本身说明气体状态变化有什么特点?
答案:说明等效地看作气体做等压变化。(即压强保持不变的变化)
由此可得出结论:当压强不变时,一定质量的理想气体的体积与热力学温度成正比。
这个结论最初是法国科学家盖·吕萨克在研究气体膨胀的实验中得到的,也叫盖·吕萨克定律。它也属于实验定律。当今可以设计多种实验方法来验证这一结论。今天我们利用在验证玻意耳定律中用过的气体定律实验器来验证这一定律。
演示实验:实验装置如图所示,此实验保持压强不变,只是利用改变烧杯中的水温来确定三个温度状态,这可从温度计上读出,再分别换算成热力学温度,再利用气体实验器上的刻度值作为达热平衡时,被封闭气体的体积值,分别为,填入下表:
出示投影幻灯片(3):
然后让学生用计算器迅速算出、、,只要读数精确,则这几个值会近似相等,从而证明了盖·吕萨克定律。
4.课堂练习
出示投影幻灯片(4),显示例题(1):
例题一水银气压计中混进了空气,因而在27℃,外界大气压为758毫米汞柱时,这个水银气压计的读数为738毫米汞柱,此时管中水银面距管顶80毫米,当温度降至-3℃时,这个气压计的读数为743毫米汞柱,求此时的实际大气压值为多少毫米汞柱?
教师引导学生按以下步骤解答此题:
(1)该题研究对象是什么?
答案:混入水银气压计中的空气。
(2)画出该题两个状态的示意图:
(3)分别写出两个状态的状态参量:
(S是管的横截面积)。
(4)将数据代入理想气体状态方程:
得
解得
(三)课堂小结
1.在任何温度和任何压强下都能严格遵循气体实验定律的气体叫理想气体。
2.理想气体状态方程为:
3.盖·吕萨克定律是指:一定质量的气体在压强不变的条件下,它的体积与热力学温度成正比。
五、说明
1.“理想气体”如同力学中的“质点”、“弹簧振子”一样,是一种理想的物理模型,是一种重要的物理研究方法。对“理想气体”研究得出的规律在很大温度范围和压强范围内都能适用于实际气体,因此它是有很大实际意义的。
2.本节课设计的验证盖·吕萨克定律的实验用的是温州师院教学仪器厂制造的J2261型气体定律实验器;实验中确定的三个温度状态应相对较稳定(即变化不能太快)以便于被研究气体与烧杯中的水能达稳定的热平衡状态,使读数较为准确。建议选当时的室温为,冰水混合物的温度,即0℃或0℃附近的温度为,保持沸腾状态的温度,即100℃或接近100℃为。这需要教师在课前作充分的准备,才能保证在课堂得出较理想的结论。作者做的一组实验值如下表所示,供参考。
室温℃
℃
℃
K
K
K
教学目标
知识目标
1、知道摩尔气体常量.了解克拉珀龙方程的推导过程.
2、在理解克拉珀龙方程内容的基础上学会方程的应用.
3、进一步强化对气体状态方程的应用.
能力目标
通过克拉珀龙方程的推导,培养学生对问题的分析、推理、综合能力.
情感目标
通过对不同类型题目的练习,引导学生自己分析研究和归纳出解题方法并根据实验选用不同的气体状态方程的表达式,培养其分析和判断能力.
教学建议
教材分析
气体实验定律和克拉珀龙方程都是气体的状态方程,其区别仅在于再实验定律中未知的常量C,再克拉珀龙方程中得到了具体的表述,即,因此,对处在某种状态下的一定质量的某种气体来说,借助普适气体常量,在已知两个状态参量的情况下便可以由克拉珀龙方程直接求出第三个参量,而无需另一个状态的参与,所以运用克拉珀龙方程解题不涉及过程问题,对于解决变质量问题尤为方便.
教法建议
在教师讲解克拉珀龙方程时,要让学生深刻理解普适常量的物理意义,注意普适常量的单位.
在应用方程解题时,注意单位必须是统一的国际单位制.
教学设计方案
教学过程总体设计
1、老师复习前面知识引入,通过提问启发学生理解克拉珀龙方程的推导.
2、学生积极思考、讨论,推导克拉珀龙方程并掌握其应用.
(一)教学重点、难点以及相应的解决办法
1、重点:克拉珀龙方程的推导和内容.
2、难点:在用克拉珀龙方程解题时如何根据题意选好研究对象,找出等量关系(列方程).
3、疑点:摩尔气体常量为什么与气体的质量和种类无关.
解决办法:明确研究对象,并把作为研究对象的气体所发生的过程弄清楚.
(二)教具学具:投影片
(三)师生互动活动设计
让学生先回顾一些基本常数,结合气态方程在老师引导下推导克拉珀龙方程,并利用所学规律解题.
(四)教学步骤
本节利用前面学过的知识推导克拉珀龙方程,并用克拉珀龙方程解题,与以前学过的方法比较,归纳解题方法,是热力学中最重要的一节.
1、摩尔气体常量
问:理想气体状态方程(常量)中的常量C与什么因素有关?
答:实验表明,常量C与气体的质量和种类有关.
问:对1mol的某种气体,常量C应为多少?
∵1mol的气体,在标准状态下:
——摩尔气体常量.
对于1mol的理想气体:
——1mol理想气体的状态方程.
2、克拉珀龙方程
对于nmol的理想气体:
即
或(m为气体的质量,M为气体的摩尔质量)克拉珀龙方程.
3、克拉珀龙方程的应用
例题讲解(参考备课资料中的典型例题)
4、总结、扩展
(1)克拉珀龙方程的推导
由(恒量)
当m、M一定时——一定质量的理想气体状态方程
当m、M、T一定时——玻意耳定律
当m、M、T一定时——查理定律
当m、M、p一定时——盖·吕萨克定律
因此,克拉珀龙方程既反映了理想气体在某一状态各参量的关系,也可以得出气体在两个状态下各气体状态参量的关系,所以,它包括了本章的所有规律,是本章的核心,把克拉珀龙方程与化学知识相结合,可编写理化综合题对考生考查.
(2)关于图像研究克拉珀龙方程
由克拉珀龙方程,可得三条等值线对应的函数关系分别为:
、、.
气体状态变化图线包括图、图和图三种图线,所有题中有以下形式:
①三种图线的相互转换;
②由图线的物理意义确定气体的三个状态参量的关系;
③结合围绕判断气体状态变化过程中的内能变化情况,在这些题型中,求解时首先要清楚各种图线的物理意义,再结合三个实验定律、气体状态方程,克拉珀龙方程以及热力学第一定律求解即可.
教学目标
知识目标
(1)认识运动状态的改变是指速度的改变,速度的改变包括速度大小和速度方向的改变;
(2)理解力是产生加速度的原因;
(3)理解质量是惯性大小的量度.
能力目标
培养学生严谨的逻辑推理能力;通过对大量实例的分析,培养学生归纳、综合能力.
情感目标
善于思考、善于总结,把物理与实际生活紧密结合.
教学建议
教材分析
本节主要要讲清三个问题:物体运动状态由哪个物理量来标志,什么能说明物体运动状态改变了;力是改变物体速度的原因,那么力就是物体产生加速度的原因;为什么说质量是惯性大小的量度.
教法建议
1、在讲物体运动状态变化时,注意强调速度大小不变、方向改变这种情况,例如直线折反、转弯.这时速度变化了,一定有加速度产生.
2、质量是惯性大小的量度这一观点是定性分析给出的,所以理解起来有一定的难度.在教学中要抓住惯性这一概念为切入点去分析,不要让学生感到太突然,找不到分析思路.
3、多分析实例,增强学生的感性认识.
教学设计示例
教学重点:力是产生加速度的原因;质量是惯性大小的量度.
教学难点:质量是惯性大小的量度.
示例:
一、力是产生加速度的原因
1、速度是描述物体运动状态的物理量.
2、物体的运动状态变化
注意:象物体做沿同一直线的往复运动,或沿曲线转弯等运动时,只要其速度方向变化,物体的运动状态就要发生变化,此时物体将具有加速度.
力是改变物体速度的原因——→力是改变物体运动状态的原因
3、力是产生加速度的原因
4、上节课所举的部分例子重新分析
二、质量是物体惯性大小的量度
1、分析:
力是改变物体速度的原因、惯性是物体保持原来速度的性质——→讨论物体惯性大小的方法是在相同力的作用下,对比产生加速度的大小.产生加速度越大,表示物体惯性越小.
2、举例分析:见书49页的例子.
3、结论:质量是物体惯性大小的量度.
4、惯性的利与弊:让学生看书并讨论
探究活动
题目:生活中的惯性现象
组织:小组或个人
方案:搜集“生活中的惯性现象”的示例并加以分析和评价,写出小论文.
评价:可锻炼学生的观察能力,分析、表达能力.
教学目标
知识目标
(1)认识运动状态的改变是指速度的改变,速度的改变包括速度大小和速度方向的改变;
(2)理解力是产生加速度的原因;
(3)理解质量是惯性大小的量度.
能力目标
培养学生严谨的逻辑推理能力;通过对大量实例的分析,培养学生归纳、综合能力.
情感目标
善于思考、善于总结,把物理与实际生活紧密结合.
教学建议
教材分析
本节主要要讲清三个问题:物体运动状态由哪个物理量来标志,什么能说明物体运动状态改变了;力是改变物体速度的原因,那么力就是物体产生加速度的原因;为什么说质量是惯性大小的量度.
教法建议
1、在讲物体运动状态变化时,注意强调速度大小不变、方向改变这种情况,例如直线折反、转弯.这时速度变化了,一定有加速度产生.
2、质量是惯性大小的量度这一观点是定性分析给出的,所以理解起来有一定的难度.在教学中要抓住惯性这一概念为切入点去分析,不要让学生感到太突然,找不到分析思路.
3、多分析实例,增强学生的感性认识.
教学设计示例
教学重点:力是产生加速度的原因;质量是惯性大小的量度.
教学难点:质量是惯性大小的量度.
示例:
一、力是产生加速度的原因
1、速度是描述物体运动状态的物理量.
2、物体的运动状态变化
注意:象物体做沿同一直线的往复运动,或沿曲线转弯等运动时,只要其速度方向变化,物体的运动状态就要发生变化,此时物体将具有加速度.
力是改变物体速度的原因——→力是改变物体运动状态的原因
3、力是产生加速度的原因
4、上节课所举的部分例子重新分析
二、质量是物体惯性大小的量度
1、分析:
力是改变物体速度的原因、惯性是物体保持原来速度的性质——→讨论物体惯性大小的方法是在相同力的作用下,对比产生加速度的大小.产生加速度越大,表示物体惯性越小.
2、举例分析:见书49页的例子.
3、结论:质量是物体惯性大小的量度.
4、惯性的利与弊:让学生看书并讨论
探究活动
题目:生活中的惯性现象
组织:小组或个人
方案:搜集“生活中的惯性现象”的示例并加以分析和评价,写出小论文.
评价:可锻炼学生的观察能力,分析、表达能力.
教学目标
知识目标
(1)认识运动状态的改变是指速度的改变,速度的改变包括速度大小和速度方向的改变;
(2)理解力是产生加速度的原因;
(3)理解质量是惯性大小的量度.
能力目标
培养学生严谨的逻辑推理能力;通过对大量实例的分析,培养学生归纳、综合能力.
情感目标
善于思考、善于总结,把物理与实际生活紧密结合.
教学建议
教材分析
本节主要要讲清三个问题:物体运动状态由哪个物理量来标志,什么能说明物体运动状态改变了;力是改变物体速度的原因,那么力就是物体产生加速度的原因;为什么说质量是惯性大小的量度.
教法建议
1、在讲物体运动状态变化时,注意强调速度大小不变、方向改变这种情况,例如直线折反、转弯.这时速度变化了,一定有加速度产生.
2、质量是惯性大小的量度这一观点是定性分析给出的,所以理解起来有一定的难度.在教学中要抓住惯性这一概念为切入点去分析,不要让学生感到太突然,找不到分析思路.
3、多分析实例,增强学生的感性认识.
教学设计示例
教学重点:力是产生加速度的原因;质量是惯性大小的量度.
教学难点:质量是惯性大小的量度.
示例:
一、力是产生加速度的原因
1、速度是描述物体运动状态的物理量.
2、物体的运动状态变化
注意:象物体做沿同一直线的往复运动,或沿曲线转弯等运动时,只要其速度方向变化,物体的运动状态就要发生变化,此时物体将具有加速度.
力是改变物体速度的原因——→力是改变物体运动状态的原因
3、力是产生加速度的原因
4、上节课所举的部分例子重新分析
二、质量是物体惯性大小的量度
1、分析:
力是改变物体速度的原因、惯性是物体保持原来速度的性质——→讨论物体惯性大小的方法是在相同力的作用下,对比产生加速度的大小.产生加速度越大,表示物体惯性越小.
2、举例分析:见书49页的例子.
3、结论:质量是物体惯性大小的量度.
4、惯性的利与弊:让学生看书并讨论
探究活动
题目:生活中的惯性现象
组织:小组或个人
方案:搜集“生活中的惯性现象”的示例并加以分析和评价,写出小论文.
评价:可锻炼学生的观察能力,分析、表达能力.
教学目标
知识目标
使学生在了解气体的体积与温度和压强有密切关系的基础上,理解气体摩尔体积的概念。
使学生在理解气体摩尔体积,特别是标准状况下,气体摩尔体积的基础上,掌握有关气体摩尔体积的计算。
能力目标
通过气体摩尔体积的概念和有关计算的教学,培养学生分析、推理、归纳、总结的能力。
通过有关气体摩尔体积计算的教学,培养学生的计算能力,并了解学科间相关知识的联系。
情感目标
通过本节的教学,激发学生的学习兴趣,培养学生的主动参与意识。
通过教学过程中的设问,引导学生科学的思维方法。
教学建议
教材分析
本节教材在学习了物质的量和摩尔质量概念的基础上,学习气体摩尔体积的概念及有关计算,这样的编排,有利于加深理解、巩固和运用有关概念,特别是深化了对物质的量及其单位的理解。本节是今后学习有关气态反应物和生成物的化学方程式的计算,以及学习化学反应速率和化学平衡的重要基础。
本节教材首先注意了学科间的联系和学生已有的知识,通过计算得出1mol几种物质的体积,设问:1mol气态物质的体积是不是也不相同呢?然后介绍气态物质的体积与外界温度、压强的关系,计算出标准状况下1mol气体的体积,引出气体摩尔体积的概念,最后是关于气体摩尔体积概念的计算。
教学建议
教法建议
1.认真钻研新教材,正确理解气体摩尔体积的概念。
原必修本39页“在标准状况下,1mol任何气体所占的体积都约是22.4L,这个体积叫做气体摩尔体积。”认为“22.4L/mol就是气体摩尔体积”。
新教材52页气体摩尔体积的定义为“单位物质的量气体所占的体积叫做气体摩尔体积。即Vm=V/n。”由此可以看出,气体摩尔体积是任意温度和压强下,气体的体积与气体的物质的量之比,而22.4L/mol是在特定条件(如:0℃,101KPa)下的气体摩尔体积。注意:当温度高于0℃,压强大于101Kpa时,1mol任何气体所占的体积也可能是22.4L。
教学中要给学生讲清气体摩尔体积与标准状况下气体摩尔体积22.4L/mol的关系。
2.本节引入方法
⑴计算法:全班学生分成3组,分别计算1mol固、液态几种物质的体积并填表。
物质
粒子数
1mol物质质量(g)
20℃密度(g/cm3)
体积(cm3)
Fe
6.02×1023
56
7.8
Al
6.02×1023
27
2.7
Pb
6.02×1023
207
11.3
H2O
6.02×1023
18
1(4℃)
H2SO4
6.02×1023
98
1.83
⑵实物展示法:有条件的学校,可分别展示1molFe、Al、Pb、H2O、H2SO4的实物,直观得到体积不同的结论;展示22.4L实物模型,这种实物展示方法学生印象深刻,感性经验得以丰富。
3.列表比较决定物质体积的主要因素(用“√”表示)
物质因素
粒子的数目
粒子间平均距离
粒子本身大小
固、液态
√
√
气态
√
√
讲清当粒子数相同的条件下,固、液态体积由粒子大小决定,气体体积主要由分子间距离决定。举例:50个乒乓球和50个篮球紧密堆积或间隔1米摆放,前者球的大小决定体积,后者球间的距离决定体积。
4.充分运用多媒体素材,展示微观的变化,活跃课堂气氛,激发学生兴趣。例如:应用微机显示温度、压强对气体体积的影响;固、液、气态物质粒子间距离;1mol液态水(0℃,18mL),加热到100℃气化为水蒸气的体积变化等。
5.通过阅读、设问、讨论,突破难点。讨论题有:物质体积的大小取决与哪些微观因素?决定固、液、气态物质体积的主要因素?在粒子数一定的情况下,为什么气体体积主要取决于分子间距离?为什么比较一定量气体的体积,要在相同的温度和压强下进行才有意义?为什么相同外界条件下,1mol固、液态物质所具有的体积不同,而1mol气体物质所具有的体积却大致相同?在相同条件下,相同物质的量的气体所具有的体积是否相同?为什么1mol液态水变为1mol水蒸气体积由18mL变为3.06×104mL体积扩大1700倍?
6.在理解标况下气体摩尔体积这一特例时,应强调以下4点:①标准状况②物质的量为1mol③任何气体物质④约为22.4L只有符合这些条件,22.4L才是1mol任何气体在标准状况下的体积。因此,非标准状况下或固、液态物质,不能使用22.4L/mol.
7.教材52页“在相同的温度和压强下,相同体积的任何气体都含有相同数目的分子”,应指出这个结论即为阿伏加德罗定律。学生基础较好的班级,还可简单介绍阿伏加德罗定律的几个重要推论。
8.教材53页的例题2,是关于气体摩尔体积的计算,教学中应指出密度法是计算气体相对分子质量的常用方法,即M=ρVm如果是标准状况下,则:M=ρ·22.4L/mol
9.在V、n、m、N之间的关系可放在学习气体摩尔体积计算例题前进行,也可放在课后小结进行。
教学建议
关于气体摩尔体积
1.气体摩尔体积1mol某气体的体积即气体摩尔体积,单位为L/mol。标准状况下任何气体的体积均为22.4L。即标准状况下气体摩尔体积为22.4L/mol。
2.阿伏加德罗定律同温同压下体积相同的任何气体都含有相同的分子数即阿伏加德罗定律。由此可见气体的体积比在同温同压下必等于分子数比。由此可以导出同温同压下不同气体间的关系:
(1)同温同压下,气体的体积比等于物质的量比。
(2)同温同容下,气体的压强比等于物质的量比。
(3)同温同压下,气体的摩尔质量比等于密度比。
(4)同温同压下,同体积的气体质量比等于摩尔质量比。
(5)同温同压下,同质量气体的体积比等于摩尔质量的反比。
此外还在运用时要结合物理中的同物质的量的气体在同温时,其体积与压强成反比;气体体积与热力学温度在同压条件下成正比。
3.气体摩尔体积的常见应用标准状况下1mol气体为22.4L,即可导出其质量便是该气体的摩尔质量。据此可求出未知化学式的气体摩尔质量和相对分子质量,也可求出1L气体的质量即气体密度。反之也可由气体密度求摩尔质量。同温同压下两气体的密度比叫气体的相对密度,可据以由气体的相对密度求气体的摩尔质量,如某气体对的相对密度为15,则其相对分子质量为。常见的有:
(1)由标准状况下气体密度求相对分子质量:
(2)由相对密度求气体的相对分子质量:若为对的相对密度则为:,若为对空气的相对密度则为:.
*(3)求混合气体的平均相对分子质量():即混合气体1mol时的质量数值。在已知各组成气体的体积分数时见①,若为质量分数见②:
①
②
(4)由同温同压下气体反应时的体积比求分子数比,进而推分子式。
(5)直接将气体摩尔体积代入有关化学方程式进行计算。
(6)气体反应物的体积比即分子数比可便于找出过量气体。
教学设计示例一
第二节气体摩尔体积
第一课时
知识目标
使学生在了解气体的体积与温度和压强有密切关系的基础上,理解气体摩尔体积的概念。
能力目标
通过气体摩尔体积的概念和有关计算的教学,培养学生分析、推理、归纳、总结的能力。
情感目标
通过本节的教学,激发学生的学习兴趣,培养学生的主动参与意识。
通过教学过程中的设问,引导学生科学的思维方法。
教学重点:气体摩尔体积的概念
教学难点:相同温度和压强下,相同物质的量的任何气体所占的体积大约相同的原因。
教学方法:设疑、导思、归纳、应用
教学手段:多媒体辅助
教学过程:
[复习提问]1.1mol物质含有的粒子数约是多少?
2.什么叫摩尔质量?
[引入新课]前面我们学习的物质的量,它把宏观上可称量的物质与微观粒子联系起来,宏观上可感知的除了物质的质量,还有物质所占的体积上节课我们研究了1mol物质所具有的质量,这节课我们来讨论1mol物质所占的体积。
[板书]一、气体摩尔体积
1.1mol固、液态物质的体积
[提问]已知物质的质量和密度,怎样求体积?
学生回答:V=
[投影]计算1mol几种固、液态物质的体积,填表;
物质
[1][2]下一页
教学目标
知识目标
(1)认识运动状态的改变是指速度的改变,速度的改变包括速度大小和速度方向的改变;
(2)理解力是产生加速度的原因;
(3)理解质量是惯性大小的量度.
能力目标
培养学生严谨的逻辑推理能力;通过对大量实例的分析,培养学生归纳、综合能力.
情感目标
善于思考、善于总结,把物理与实际生活紧密结合.
教学建议
教材分析
本节主要要讲清三个问题:物体运动状态由哪个物理量来标志,什么能说明物体运动状态改变了;力是改变物体速度的原因,那么力就是物体产生加速度的原因;为什么说质量是惯性大小的量度.
教法建议
1、在讲物体运动状态变化时,注意强调速度大小不变、方向改变这种情况,例如直线折反、转弯.这时速度变化了,一定有加速度产生.
2、质量是惯性大小的量度这一观点是定性分析给出的,所以理解起来有一定的难度.在教学中要抓住惯性这一概念为切入点去分析,不要让学生感到太突然,找不到分析思路.
3、多分析实例,增强学生的感性认识.
教学设计示例
教学重点:力是产生加速度的原因;质量是惯性大小的量度.
教学难点:质量是惯性大小的量度.
示例:
一、力是产生加速度的原因
1、速度是描述物体运动状态的物理量.
2、物体的运动状态变化
注意:象物体做沿同一直线的往复运动,或沿曲线转弯等运动时,只要其速度方向变化,物体的运动状态就要发生变化,此时物体将具有加速度.
力是改变物体速度的原因——→力是改变物体运动状态的原因
3、力是产生加速度的原因
4、上节课所举的部分例子重新分析
二、质量是物体惯性大小的量度
1、分析:
力是改变物体速度的原因、惯性是物体保持原来速度的性质——→讨论物体惯性大小的方法是在相同力的作用下,对比产生加速度的大小.产生加速度越大,表示物体惯性越小.
2、举例分析:见书49页的例子.
3、结论:质量是物体惯性大小的量度.
4、惯性的利与弊:让学生看书并讨论
探究活动
题目:生活中的惯性现象
组织:小组或个人
方案:搜集“生活中的惯性现象”的示例并加以分析和评价,写出小论文.
评价:可锻炼学生的观察能力,分析、表达能力.
本文网址:http://m.jk251.com/jiaoan/9383.html