导航栏

×
范文大全 > 高中教案

带电粒子在磁场中的运动【精】

提起各科的教案,我相信大家都不陌生,教案是教师安排教学工作的依据,高质量的教案对学生的成长有促进作用,好的高中教案都有哪些内容?本站收集了《带电粒子在磁场中的运动【精】》,供您参考。

教学目标

知识目标

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

能力目标

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

情感目标

通过学习质谱仪的工作原理,让学生认识先进科技的发展,有助于培养学生对物理的学习兴趣.

教学建议

教材分析

本节重点是研究带电粒子垂直射入匀强磁场中的运动规律:半径以及周期,通过复习相关力学知识,利用力于运动的关系突破这一重点,需要注意的是:

1、确定垂直射入匀强电场中的带电粒子是匀速圆周运动;

2、带电粒子的重力通常不考虑。

教法建议

由于我们研究的是带电粒子在磁场中的运动情况,研究的是磁场力与运动的关系,因此教学开始,需要学生回忆相关的力学知识,为了引导学生分析推导粒子做匀速圆周运动的原因、规律,教师可以通过实验演示引入,让学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.最后通过例题讲解,加深知识的理解.

教学设计方案

带电粒子在磁场中的运动质谱仪

一、素质教育目标

(一)知识教学点

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

(二)能力训练点

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

(三)德育渗透点

通过学习质谱仪的工作原理,理解高科技的巨大力量.

(四)美育渗透点

用电子射线管产生的电子做圆周运动的精美图像感染学生,提高学生对物理学图像形式美的审美感受力.

二、学法引导

1、教师通过演示实验法引入,复习提问法引导学生分析推导粒子做匀速圆周运动的原因、规律.通过例题讲解,加深理解.

2、学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.

三、重点难点疑点及解决办法

1、重点

带电粒子垂直射入匀强磁场中的运动半径和运动周期.

2、难点

确定垂直射入匀强磁场中的带电粒子运动是匀速圆周运动.

3、疑点

带电粒子的重力通常为什么不考虑?

4、解决办法

复习力学知识、引导同学利用力与运动的关系分析,讨论带电粒子在磁场中的运动情况。

四、课时安排

1课时

五、教具学具准备

演示用特制的电子射线管。

六、师生互动活动设计

教师先通过演示实验引入,再启发引导学生用力学知识分析原因,推导规律,通过例题讲解,学生思考和讨论进一步加深对知识的理解,提高学生运用知识解决实际问题的能力。

七、教学步骤

(一)明确目标

(略)

(二)整体感知

本节教学首先通过演示实验告诉学生,当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动这一结论,然后试着用力与运动的关系分析粒子为什么做匀速圆周运动,再由学生推导带电粒子在磁场中的运动半径和周期,根据力学知识,重点是理解运动半径与磁感应强度、速度的关系;运动周期与粒子速率和运动半径无关.

(三)重点、难点的学习与目标完成过程

1、引入新课

上一节我们学习了洛仑兹力的概念,我们知道带电粒子垂直磁场方向运动时,会受到大小,方向始终与速度方向垂直的洛仑兹力作用,今天我们来研究一下,受洛仑兹力作用的带电粒子是如何运动的?

2、粒子为什么做匀速圆周的运动?

首先通过演示实验观察到,当带电粒子的初速度方向与匀强磁场方向垂直时,粒子的运动轨道是圆.

在力学中我们学习过,物体作匀速圆周运动的条件是物体所受的合外力大小不变,方向始终与速度方向垂直.当带电粒子垂直于匀强磁场方向运动时,通常它的重力可以忽略不计(请同学们讨论),可看作只受洛仑兹力作用,洛仑兹力方向和速度方向在同一个平面内,由于洛仑兹力方向总与速度方向垂直,因而它对带电粒子不做功,根据动能定理可知运动粒子的速度大小不变,再由可知,粒子在运动过程中所受洛仑兹力的大小即合外力的大小不变,根据物体作匀速圆周运动的条件得出带电粒子垂直匀强磁场运动时,作匀速圆周运动.

3、粒子运动的轨道半径和周期公式

带电粒子垂直于匀强磁场方向运动时做匀速圆周运动,其向心力等于洛仑兹力,请同学们根据牛顿第二定律,推导带电粒子的运动半径和周期公式.

经过推导得出粒子运动半径,运动周期。

运用学过的力学知识理解,当粒子运动速度较大时,粒子要离心运动,其运动半径增大,所以速度大,半径也大;当磁场较强时,运动电荷受洛仑兹力增大,粒子要向心运动,其运动半径减小,所以磁感应强度大,半径小.由于带电粒子运动速度大时,其运动半径大,运动轨迹也长,可以理解粒子运动的周期与速度的大小和轨道半径无关.为了加深同学们对半径和周期公式的理解,举下面的例题加以练习.

[例1]同一种带电粒子以不同的速度垂直射入匀强磁场中,其运动轨迹如图所示,则可知

(1)带电粒子进入磁场的速度值有几个?

(2)这些速度的大小关系为.

(3)三束粒子从O点出发分别到达1、2、3点所用时间关系为.

4、质谱仪

首先请同学们阅读课本上例题的分析求解过程,然后组织学生讨论质谱仪的工作原理.

(四)总结、扩展

本节课我们学习了带电粒子垂直于匀强磁场运动的情况,经过实验演示和理论分析得出粒子做匀速圆周运动.并根据牛顿运动定律得出粒子运动的半径公式和周期公式.最后我们讨论了它的一个具体应用——质谱仪.

但应注意的是如果带电粒子速度方向不是垂直匀强磁场方向时,带电粒子将不再是作匀速圆周运动.

八、布置作业

(1)P156(1)~(6)

九、板书设计

五、带电粒子在磁场中的运动质谱仪

一、运动轨迹

粒子作匀速圆周运动.

二、半径和周期

运动半径:

运动周期:

三、质谱仪

jk251.cOm扩展阅读

带电粒子在磁场中的运动(小编推荐)


教学目标

知识目标

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

能力目标

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

情感目标

通过学习质谱仪的工作原理,让学生认识先进科技的发展,有助于培养学生对物理的学习兴趣.

教学建议

教材分析

本节重点是研究带电粒子垂直射入匀强磁场中的运动规律:半径以及周期,通过复习相关力学知识,利用力于运动的关系突破这一重点,需要注意的是:

1、确定垂直射入匀强电场中的带电粒子是匀速圆周运动;

2、带电粒子的重力通常不考虑。

教法建议

由于我们研究的是带电粒子在磁场中的运动情况,研究的是磁场力与运动的关系,因此教学开始,需要学生回忆相关的力学知识,为了引导学生分析推导粒子做匀速圆周运动的原因、规律,教师可以通过实验演示引入,让学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.最后通过例题讲解,加深知识的理解.

教学设计方案

带电粒子在磁场中的运动质谱仪

一、素质教育目标

(一)知识教学点

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

(二)能力训练点

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

(三)德育渗透点

通过学习质谱仪的工作原理,理解高科技的巨大力量.

(四)美育渗透点

用电子射线管产生的电子做圆周运动的精美图像感染学生,提高学生对物理学图像形式美的审美感受力.

二、学法引导

1、教师通过演示实验法引入,复习提问法引导学生分析推导粒子做匀速圆周运动的原因、规律.通过例题讲解,加深理解.

2、学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.

三、重点难点疑点及解决办法

1、重点

带电粒子垂直射入匀强磁场中的运动半径和运动周期.

2、难点

确定垂直射入匀强磁场中的带电粒子运动是匀速圆周运动.

3、疑点

带电粒子的重力通常为什么不考虑?

4、解决办法

复习力学知识、引导同学利用力与运动的关系分析,讨论带电粒子在磁场中的运动情况。

四、课时安排

1课时

五、教具学具准备

演示用特制的电子射线管。

六、师生互动活动设计

教师先通过演示实验引入,再启发引导学生用力学知识分析原因,推导规律,通过例题讲解,学生思考和讨论进一步加深对知识的理解,提高学生运用知识解决实际问题的能力。

七、教学步骤

(一)明确目标

(略)

(二)整体感知

本节教学首先通过演示实验告诉学生,当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动这一结论,然后试着用力与运动的关系分析粒子为什么做匀速圆周运动,再由学生推导带电粒子在磁场中的运动半径和周期,根据力学知识,重点是理解运动半径与磁感应强度、速度的关系;运动周期与粒子速率和运动半径无关.

(三)重点、难点的学习与目标完成过程

1、引入新课

上一节我们学习了洛仑兹力的概念,我们知道带电粒子垂直磁场方向运动时,会受到大小,方向始终与速度方向垂直的洛仑兹力作用,今天我们来研究一下,受洛仑兹力作用的带电粒子是如何运动的?

2、粒子为什么做匀速圆周的运动?

首先通过演示实验观察到,当带电粒子的初速度方向与匀强磁场方向垂直时,粒子的运动轨道是圆.

在力学中我们学习过,物体作匀速圆周运动的条件是物体所受的合外力大小不变,方向始终与速度方向垂直.当带电粒子垂直于匀强磁场方向运动时,通常它的重力可以忽略不计(请同学们讨论),可看作只受洛仑兹力作用,洛仑兹力方向和速度方向在同一个平面内,由于洛仑兹力方向总与速度方向垂直,因而它对带电粒子不做功,根据动能定理可知运动粒子的速度大小不变,再由可知,粒子在运动过程中所受洛仑兹力的大小即合外力的大小不变,根据物体作匀速圆周运动的条件得出带电粒子垂直匀强磁场运动时,作匀速圆周运动.

3、粒子运动的轨道半径和周期公式

带电粒子垂直于匀强磁场方向运动时做匀速圆周运动,其向心力等于洛仑兹力,请同学们根据牛顿第二定律,推导带电粒子的运动半径和周期公式.

经过推导得出粒子运动半径,运动周期。

运用学过的力学知识理解,当粒子运动速度较大时,粒子要离心运动,其运动半径增大,所以速度大,半径也大;当磁场较强时,运动电荷受洛仑兹力增大,粒子要向心运动,其运动半径减小,所以磁感应强度大,半径小.由于带电粒子运动速度大时,其运动半径大,运动轨迹也长,可以理解粒子运动的周期与速度的大小和轨道半径无关.为了加深同学们对半径和周期公式的理解,举下面的例题加以练习.

[例1]同一种带电粒子以不同的速度垂直射入匀强磁场中,其运动轨迹如图所示,则可知

(1)带电粒子进入磁场的速度值有几个?

(2)这些速度的大小关系为.

(3)三束粒子从O点出发分别到达1、2、3点所用时间关系为.

4、质谱仪

首先请同学们阅读课本上例题的分析求解过程,然后组织学生讨论质谱仪的工作原理.

(四)总结、扩展

本节课我们学习了带电粒子垂直于匀强磁场运动的情况,经过实验演示和理论分析得出粒子做匀速圆周运动.并根据牛顿运动定律得出粒子运动的半径公式和周期公式.最后我们讨论了它的一个具体应用——质谱仪.

但应注意的是如果带电粒子速度方向不是垂直匀强磁场方向时,带电粒子将不再是作匀速圆周运动.

八、布置作业

(1)P156(1)~(6)

九、板书设计

五、带电粒子在磁场中的运动质谱仪

一、运动轨迹

粒子作匀速圆周运动.

二、半径和周期

运动半径:

运动周期:

三、质谱仪

带电粒子在匀强电场中的运动


教学目标

知识目标

1、理解规律——只受电场力,带电粒子做匀变速运动.重点掌握初速度与场强方向垂直的带电粒子在电场中的运动——类平抛运动.

2、知道示波管的构造和原理.

能力目标

1、渗透物理学方法的教育,让学生学习运用理想化方法,突出主要因素,忽略次要因素的科学的研究方法.

2、提高学生的分析推理能力.

情感目标

通过本节内容的学习,培养学生科学研究的意志品质.

教学建议

本节内容是电场一章中非常重要的知识点,里面涉及到电学与力学知识的综合运用,因此教师在讲解时,一是注意对力学知识的有效复习,以便于知识的迁移,另外,由于带电粒子在电场中的运动公式比较复杂,所以教学中需要注意使学生掌握解题的思维和方法,而不要一味的强调公式的记忆.

在讲解时要渗透物理学方法的教育,让学生学习运用理想化方法、突出主要因素、忽略次要因素(忽略带电粒子的重力)的科学的研究方法.

关于示波管的讲解,教材中介绍的非常详细,教师需要重点强调其工作原理,让学生理解加速和偏转问题——带电粒子在电场中加速偏转的实际应用.

教学设计示例

第九节

1、带电粒子的加速

教师讲解:这节课我们研究,关于运动,在前面的学习中我们已经研究过了:物体在力的作用下,运动状态发生了改变,同样,对于电场中的带电粒子而言,受到电场力的作用,那么它的运动情况又是怎样的呢?带电粒子在电场中运动的过程中,电场力做的功大小为,带电粒子到达极板时动能,根据动能定理,,这个公式是利用能量关系得到的,不仅使用于匀强电场,而且适用于任何其它电场.

分析课本113页的例题1.

2、带电粒子的偏转

根据能量的关系,我们可以得到带电粒子在任何电场中的运动的初末状态,下面,我们针对匀强电场具体研究一下带电粒子在电场中的运动情况.

(教师出示图片)为了方便研究,我们选用匀强电场:平行两个带电极板之间的电场就是匀强电场.

①若带电粒子在电场中所受合力为零时,即时,粒子将保持静止状态或匀速直线运动状态.

带电粒子处于静止状态,,,所受重力竖直向下,场强方向竖直向下,带电体带负电,所以所受电场力竖直向上.

②若且与初速度方向在同一直线上,带电粒子将做加速或减速直线运动.(变速直线运动)

A、打入正电荷,将做匀加速直线运动.

B、打入负电荷,由于重力极小,可以忽略,电荷只受到电场力作用,将做匀减速直线运动.

③若,且与初速度方向有夹角,带电粒子将做曲线运动.,合外力竖直向下,带电粒子做匀变速曲线运动.(如下图所示)

注意:若不计重力,初速度,带电粒子将在电场中做类平抛运动.

复习:物体在只受重力的作用下,以一定水平速度抛出,物体的实际运动为这两种运动的合运动.水平方向上不受力作用,做匀速直线运动,竖直方向上只受重力,做初速度为零的自由落体运动.

水平方向:

竖直方向:

与此相似,当忽略带电粒子的重力时,且,带电粒子在电场中将做类平抛运动.与平抛运动区别的只是在沿着电场方向上,带电粒子做加速度为的匀变速直线运动.

例题讲解:已知,平行两个电极板间距为d,板长为l,初速度,板间电压为U,带电粒子质量为m,带电量为+q.分析带电粒子的运动情况:

①粒子在与电场方向垂直的方向上做匀速直线运动,;在沿电场方向做初速度为零的匀加速直线运动,,称为侧移.若粒子能穿过电场,而不打在极板上,侧移量为多少呢?

②射出时的末速度与初速度的夹角称为偏向角.

③反向延长线与延长线的交点在处.

证明:

注意:以上结论均适用于带电粒子能从电场中穿出的情况.如果带电粒子没有从电场中穿出,此时不再等于板长l,应根据情况进行分析.

得到了带电粒子在匀强电场中的基本运动情况,下面,我们看看其实际的应用示例.

3、示波管的原理:

学生首先自己研究,对照例题,自学完成,教师可以通过放映有关示波器的视频资料加深学生对本节内容的理解.

4、教师总结:

教师讲解:本节内容是关于情况,是电学和力学知识的综合,带电粒子在电场中的运动,常见的有加速、减速、偏转、圆运动等等,规律跟力学是相同的,只是在分析物体受力时,注意分析电场力,同时注意:为了方便问题的研究,对于微观粒子的电荷,因为重力非常小,我们可以忽略不计.对于示波管,实际就是带电粒子在电场中的加速偏转问题的实际应用.

5、布置课后作业

关于带电粒子在磁场中的运动的高中教案推荐


教学目标

知识目标

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

能力目标

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

情感目标

通过学习质谱仪的工作原理,让学生认识先进科技的发展,有助于培养学生对物理的学习兴趣.

教学建议

教材分析

本节重点是研究带电粒子垂直射入匀强磁场中的运动规律:半径以及周期,通过复习相关力学知识,利用力于运动的关系突破这一重点,需要注意的是:

1、确定垂直射入匀强电场中的带电粒子是匀速圆周运动;

2、带电粒子的重力通常不考虑。

教法建议

由于我们研究的是带电粒子在磁场中的运动情况,研究的是磁场力与运动的关系,因此教学开始,需要学生回忆相关的力学知识,为了引导学生分析推导粒子做匀速圆周运动的原因、规律,教师可以通过实验演示引入,让学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.最后通过例题讲解,加深知识的理解.

教学设计方案

带电粒子在磁场中的运动质谱仪

一、素质教育目标

(一)知识教学点

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

(二)能力训练点

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

(三)德育渗透点

通过学习质谱仪的工作原理,理解高科技的巨大力量.

(四)美育渗透点

用电子射线管产生的电子做圆周运动的精美图像感染学生,提高学生对物理学图像形式美的审美感受力.

二、学法引导

1、教师通过演示实验法引入,复习提问法引导学生分析推导粒子做匀速圆周运动的原因、规律.通过例题讲解,加深理解.

2、学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.

三、重点难点疑点及解决办法

1、重点

带电粒子垂直射入匀强磁场中的运动半径和运动周期.

2、难点

确定垂直射入匀强磁场中的带电粒子运动是匀速圆周运动.

3、疑点

带电粒子的重力通常为什么不考虑?

4、解决办法

复习力学知识、引导同学利用力与运动的关系分析,讨论带电粒子在磁场中的运动情况。

四、课时安排

1课时

五、教具学具准备

演示用特制的电子射线管。

六、师生互动活动设计

教师先通过演示实验引入,再启发引导学生用力学知识分析原因,推导规律,通过例题讲解,学生思考和讨论进一步加深对知识的理解,提高学生运用知识解决实际问题的能力。

七、教学步骤

(一)明确目标

(略)

(二)整体感知

本节教学首先通过演示实验告诉学生,当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动这一结论,然后试着用力与运动的关系分析粒子为什么做匀速圆周运动,再由学生推导带电粒子在磁场中的运动半径和周期,根据力学知识,重点是理解运动半径与磁感应强度、速度的关系;运动周期与粒子速率和运动半径无关.

(三)重点、难点的学习与目标完成过程

1、引入新课

上一节我们学习了洛仑兹力的概念,我们知道带电粒子垂直磁场方向运动时,会受到大小,方向始终与速度方向垂直的洛仑兹力作用,今天我们来研究一下,受洛仑兹力作用的带电粒子是如何运动的?

2、粒子为什么做匀速圆周的运动?

首先通过演示实验观察到,当带电粒子的初速度方向与匀强磁场方向垂直时,粒子的运动轨道是圆.

在力学中我们学习过,物体作匀速圆周运动的条件是物体所受的合外力大小不变,方向始终与速度方向垂直.当带电粒子垂直于匀强磁场方向运动时,通常它的重力可以忽略不计(请同学们讨论),可看作只受洛仑兹力作用,洛仑兹力方向和速度方向在同一个平面内,由于洛仑兹力方向总与速度方向垂直,因而它对带电粒子不做功,根据动能定理可知运动粒子的速度大小不变,再由可知,粒子在运动过程中所受洛仑兹力的大小即合外力的大小不变,根据物体作匀速圆周运动的条件得出带电粒子垂直匀强磁场运动时,作匀速圆周运动.

3、粒子运动的轨道半径和周期公式

带电粒子垂直于匀强磁场方向运动时做匀速圆周运动,其向心力等于洛仑兹力,请同学们根据牛顿第二定律,推导带电粒子的运动半径和周期公式.

经过推导得出粒子运动半径,运动周期。

运用学过的力学知识理解,当粒子运动速度较大时,粒子要离心运动,其运动半径增大,所以速度大,半径也大;当磁场较强时,运动电荷受洛仑兹力增大,粒子要向心运动,其运动半径减小,所以磁感应强度大,半径小.由于带电粒子运动速度大时,其运动半径大,运动轨迹也长,可以理解粒子运动的周期与速度的大小和轨道半径无关.为了加深同学们对半径和周期公式的理解,举下面的例题加以练习.

[例1]同一种带电粒子以不同的速度垂直射入匀强磁场中,其运动轨迹如图所示,则可知

(1)带电粒子进入磁场的速度值有几个?

(2)这些速度的大小关系为.

(3)三束粒子从O点出发分别到达1、2、3点所用时间关系为.

4、质谱仪

首先请同学们阅读课本上例题的分析求解过程,然后组织学生讨论质谱仪的工作原理.

(四)总结、扩展

本节课我们学习了带电粒子垂直于匀强磁场运动的情况,经过实验演示和理论分析得出粒子做匀速圆周运动.并根据牛顿运动定律得出粒子运动的半径公式和周期公式.最后我们讨论了它的一个具体应用——质谱仪.

但应注意的是如果带电粒子速度方向不是垂直匀强磁场方向时,带电粒子将不再是作匀速圆周运动.

八、布置作业

(1)P156(1)~(6)

九、板书设计

五、带电粒子在磁场中的运动质谱仪

一、运动轨迹

粒子作匀速圆周运动.

二、半径和周期

运动半径:

运动周期:

三、质谱仪

关于物理教案 带电粒子在磁场中的运动的高中教案推荐


教学目标

知识目标

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

能力目标

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

情感目标

通过学习质谱仪的工作原理,让学生认识先进科技的发展,有助于培养学生对物理的学习兴趣.

教学建议

教材分析

本节重点是研究带电粒子垂直射入匀强磁场中的运动规律:半径以及周期,通过复习相关力学知识,利用力于运动的关系突破这一重点,需要注意的是:

1、确定垂直射入匀强电场中的带电粒子是匀速圆周运动;

2、带电粒子的重力通常不考虑。

教法建议

由于我们研究的是带电粒子在磁场中的运动情况,研究的是磁场力与运动的关系,因此教学开始,需要学生回忆相关的力学知识,为了引导学生分析推导粒子做匀速圆周运动的原因、规律,教师可以通过实验演示引入,让学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.最后通过例题讲解,加深知识的理解.

教学设计方案

带电粒子在磁场中的运动质谱仪

一、素质教育目标

(一)知识教学点

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

(二)能力训练点

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

(三)德育渗透点

通过学习质谱仪的工作原理,理解高科技的巨大力量.

(四)美育渗透点

用电子射线管产生的电子做圆周运动的精美图像感染学生,提高学生对物理学图像形式美的审美感受力.

二、学法引导

1、教师通过演示实验法引入,复习提问法引导学生分析推导粒子做匀速圆周运动的原因、规律.通过例题讲解,加深理解.

2、学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.

三、重点难点疑点及解决办法

1、重点

带电粒子垂直射入匀强磁场中的运动半径和运动周期.

2、难点

确定垂直射入匀强磁场中的带电粒子运动是匀速圆周运动.

3、疑点

带电粒子的重力通常为什么不考虑?

4、解决办法

复习力学知识、引导同学利用力与运动的关系分析,讨论带电粒子在磁场中的运动情况。

四、课时安排

1课时

五、教具学具准备

演示用特制的电子射线管。

六、师生互动活动设计

教师先通过演示实验引入,再启发引导学生用力学知识分析原因,推导规律,通过例题讲解,学生思考和讨论进一步加深对知识的理解,提高学生运用知识解决实际问题的能力。

七、教学步骤

(一)明确目标

(略)

(二)整体感知

本节教学首先通过演示实验告诉学生,当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动这一结论,然后试着用力与运动的关系分析粒子为什么做匀速圆周运动,再由学生推导带电粒子在磁场中的运动半径和周期,根据力学知识,重点是理解运动半径与磁感应强度、速度的关系;运动周期与粒子速率和运动半径无关.

(三)重点、难点的学习与目标完成过程

1、引入新课

上一节我们学习了洛仑兹力的概念,我们知道带电粒子垂直磁场方向运动时,会受到大小,方向始终与速度方向垂直的洛仑兹力作用,今天我们来研究一下,受洛仑兹力作用的带电粒子是如何运动的?

2、粒子为什么做匀速圆周的运动?

首先通过演示实验观察到,当带电粒子的初速度方向与匀强磁场方向垂直时,粒子的运动轨道是圆.

在力学中我们学习过,物体作匀速圆周运动的条件是物体所受的合外力大小不变,方向始终与速度方向垂直.当带电粒子垂直于匀强磁场方向运动时,通常它的重力可以忽略不计(请同学们讨论),可看作只受洛仑兹力作用,洛仑兹力方向和速度方向在同一个平面内,由于洛仑兹力方向总与速度方向垂直,因而它对带电粒子不做功,根据动能定理可知运动粒子的速度大小不变,再由可知,粒子在运动过程中所受洛仑兹力的大小即合外力的大小不变,根据物体作匀速圆周运动的条件得出带电粒子垂直匀强磁场运动时,作匀速圆周运动.

3、粒子运动的轨道半径和周期公式

带电粒子垂直于匀强磁场方向运动时做匀速圆周运动,其向心力等于洛仑兹力,请同学们根据牛顿第二定律,推导带电粒子的运动半径和周期公式.

经过推导得出粒子运动半径,运动周期。

运用学过的力学知识理解,当粒子运动速度较大时,粒子要离心运动,其运动半径增大,所以速度大,半径也大;当磁场较强时,运动电荷受洛仑兹力增大,粒子要向心运动,其运动半径减小,所以磁感应强度大,半径小.由于带电粒子运动速度大时,其运动半径大,运动轨迹也长,可以理解粒子运动的周期与速度的大小和轨道半径无关.为了加深同学们对半径和周期公式的理解,举下面的例题加以练习.

[例1]同一种带电粒子以不同的速度垂直射入匀强磁场中,其运动轨迹如图所示,则可知

(1)带电粒子进入磁场的速度值有几个?

(2)这些速度的大小关系为.

(3)三束粒子从O点出发分别到达1、2、3点所用时间关系为.

4、质谱仪

首先请同学们阅读课本上例题的分析求解过程,然后组织学生讨论质谱仪的工作原理.

(四)总结、扩展

本节课我们学习了带电粒子垂直于匀强磁场运动的情况,经过实验演示和理论分析得出粒子做匀速圆周运动.并根据牛顿运动定律得出粒子运动的半径公式和周期公式.最后我们讨论了它的一个具体应用——质谱仪.

但应注意的是如果带电粒子速度方向不是垂直匀强磁场方向时,带电粒子将不再是作匀速圆周运动.

八、布置作业

(1)P156(1)~(6)

九、板书设计

五、带电粒子在磁场中的运动质谱仪

一、运动轨迹

粒子作匀速圆周运动.

二、半径和周期

运动半径:

运动周期:

三、质谱仪

物理教案 带电粒子在电场中的运动【荐】


带电粒子在电场中的运动

一、教学目标

1.了解带电粒子在电场中的运动——只受电场力,带电粒子做匀变速运动。

2.重点掌握初速度与场强方向垂直的带电粒子在电场中的运动——类平抛运动。

3.渗透物理学方法的教育:运用理想化方法,突出主要因素,忽略次要因素,不计粒子重力。

二、重点分析

初速度与场强方向垂直的带电粒子在电场中运动,沿电场方向(或反向)做初速度为零的匀加速直线运动,垂直于电场方向为匀速直线运动。

三、主要教学过程

1.带电粒子在磁场中的运动情况

①若带电粒子在电场中所受合力为零时,即∑F=0时,粒子将保

持静止状态或匀速直线运动状态。

例带电粒子在电场中处于静止状态,该粒子带正电还是负电?

分析带电粒子处于静止状态,∑F=0,mg=Eq,因为所受重力竖直向下,所以所受电场力必为竖直向上。又因为场强方向竖直向下,所以带电体带负电。

②若∑F≠0且与初速度方向在同一直线上,带电粒子将做加速或减速直线运动。(变速直线运动)

打入正电荷,将做匀加速直线运动。

打入负电荷,将做匀减速直线运动。

③若∑F≠0,且与初速度方向有夹角(不等于0°,180°),带电粒子将做曲线运动。

mg>Eq,合外力竖直向下v0与∑F夹角不等于0°或180°,带电粒子做匀变速曲线运动。在第三种情况中重点分析类平抛运动。

2.若不计重力,初速度v0⊥E,带电粒子将在电场中做类平抛运动。

复习:物体在只受重力的作用下,被水平抛出,在水平方向上不受力,将做匀速直线运动,在竖直方向上只受重力,做初速度为零的自由落体运动。物体的实际运动为这两种运动的合运动。

与此相似,不计mg,v0⊥E时,带电粒子在磁场中将做类平抛运动。

板间距为d,板长为l,初速度v0,板间电压为U,带电粒子质量为m,带电量为+q。

①粒子在与电场方向垂直的方向上做匀速直线运动,x=v0t;在沿电

若粒子能穿过电场,而不打在极板上,侧移量为多少呢?

注:以上结论均适用于带电粒子能从电场中穿出的情况。如果带电粒子没有从电场中穿出,此时v0t不再等于板长l,应根据情况进行分析。

设粒子带正电,以v0进入电压为U1的电场,将做匀加速直线运动,穿过电场时速度增大,动能增大,所以该电场称为加速电场。

进入电压为U2的电场后,粒子将发生偏转,设电场称为偏转电场。

例1质量为m的带电粒子,以初速度v0进入电场后沿直线运动到上极板。

(1)物体做的是什么运动?

(2)电场力做功多少?

(3)带电体的电性?

例2如图,一平行板电容器板长l=4cm,板间距离为d=3cm,倾斜放置,使板面与水平方向夹角α=37°,若两板间所加电压U=100V,一带电量q=3×10-10C的负电荷以v0=0.5m/s的速度自A板左边缘水平进入电场,在电场中沿水平方向运动,并恰好从B板右边缘水平飞出,则带电粒子从电场中飞出时的速度为多少?带电粒子质量为多少?

例3一质量为m,带电量为+q的小球从距地面高h处以一定的初速度水平抛出。在距抛出点水平距离为l处,有一根管口比小球直径略大的

管子上方的整个区域里加一个场强方向水平向左的匀强电场。如图:

求:(1)小球的初速度v;

(2)电场强度E的大小;

(3)小球落地时的动能。

带电粒子在匀强电场中的运动 万能通用篇


教学目标

知识目标

1、理解规律——只受电场力,带电粒子做匀变速运动.重点掌握初速度与场强方向垂直的带电粒子在电场中的运动——类平抛运动.

2、知道示波管的构造和原理.

能力目标

1、渗透物理学方法的教育,让学生学习运用理想化方法,突出主要因素,忽略次要因素的科学的研究方法.

2、提高学生的分析推理能力.

情感目标

通过本节内容的学习,培养学生科学研究的意志品质.

教学建议

本节内容是电场一章中非常重要的知识点,里面涉及到电学与力学知识的综合运用,因此教师在讲解时,一是注意对力学知识的有效复习,以便于知识的迁移,另外,由于带电粒子在电场中的运动公式比较复杂,所以教学中需要注意使学生掌握解题的思维和方法,而不要一味的强调公式的记忆.

在讲解时要渗透物理学方法的教育,让学生学习运用理想化方法、突出主要因素、忽略次要因素(忽略带电粒子的重力)的科学的研究方法.

关于示波管的讲解,教材中介绍的非常详细,教师需要重点强调其工作原理,让学生理解加速和偏转问题——带电粒子在电场中加速偏转的实际应用.

教学设计示例

第九节

1、带电粒子的加速

教师讲解:这节课我们研究,关于运动,在前面的学习中我们已经研究过了:物体在力的作用下,运动状态发生了改变,同样,对于电场中的带电粒子而言,受到电场力的作用,那么它的运动情况又是怎样的呢?带电粒子在电场中运动的过程中,电场力做的功大小为,带电粒子到达极板时动能,根据动能定理,,这个公式是利用能量关系得到的,不仅使用于匀强电场,而且适用于任何其它电场.

分析课本113页的例题1.

2、带电粒子的偏转

根据能量的关系,我们可以得到带电粒子在任何电场中的运动的初末状态,下面,我们针对匀强电场具体研究一下带电粒子在电场中的运动情况.

(教师出示图片)为了方便研究,我们选用匀强电场:平行两个带电极板之间的电场就是匀强电场.

①若带电粒子在电场中所受合力为零时,即时,粒子将保持静止状态或匀速直线运动状态.

带电粒子处于静止状态,,,所受重力竖直向下,场强方向竖直向下,带电体带负电,所以所受电场力竖直向上.

②若且与初速度方向在同一直线上,带电粒子将做加速或减速直线运动.(变速直线运动)

A、打入正电荷,将做匀加速直线运动.

B、打入负电荷,由于重力极小,可以忽略,电荷只受到电场力作用,将做匀减速直线运动.

③若,且与初速度方向有夹角,带电粒子将做曲线运动.,合外力竖直向下,带电粒子做匀变速曲线运动.(如下图所示)

注意:若不计重力,初速度,带电粒子将在电场中做类平抛运动.

复习:物体在只受重力的作用下,以一定水平速度抛出,物体的实际运动为这两种运动的合运动.水平方向上不受力作用,做匀速直线运动,竖直方向上只受重力,做初速度为零的自由落体运动.

水平方向:

竖直方向:

与此相似,当忽略带电粒子的重力时,且,带电粒子在电场中将做类平抛运动.与平抛运动区别的只是在沿着电场方向上,带电粒子做加速度为的匀变速直线运动.

例题讲解:已知,平行两个电极板间距为d,板长为l,初速度,板间电压为U,带电粒子质量为m,带电量为+q.分析带电粒子的运动情况:

①粒子在与电场方向垂直的方向上做匀速直线运动,;在沿电场方向做初速度为零的匀加速直线运动,,称为侧移.若粒子能穿过电场,而不打在极板上,侧移量为多少呢?

②射出时的末速度与初速度的夹角称为偏向角.

③反向延长线与延长线的交点在处.

证明:

注意:以上结论均适用于带电粒子能从电场中穿出的情况.如果带电粒子没有从电场中穿出,此时不再等于板长l,应根据情况进行分析.

得到了带电粒子在匀强电场中的基本运动情况,下面,我们看看其实际的应用示例.

3、示波管的原理:

学生首先自己研究,对照例题,自学完成,教师可以通过放映有关示波器的视频资料加深学生对本节内容的理解.

4、教师总结:

教师讲解:本节内容是关于情况,是电学和力学知识的综合,带电粒子在电场中的运动,常见的有加速、减速、偏转、圆运动等等,规律跟力学是相同的,只是在分析物体受力时,注意分析电场力,同时注意:为了方便问题的研究,对于微观粒子的电荷,因为重力非常小,我们可以忽略不计.对于示波管,实际就是带电粒子在电场中的加速偏转问题的实际应用.

5、布置课后作业

磁场【精】


教学目标

知识目标

1、了解磁场的产生和磁现象.

2、理解磁场的方向性,知道用磁感线反映磁场的方向.掌握直线电流、环形电流和通电螺线管产生磁场的磁感线空间分布情况.

3、掌握安培定则,并能用安培定则熟练地判定电流、以及电流产生的磁场方向.

能力目标

1、通过磁场现象的学习,培养学生的观察能力、分析能力和空间想象能力.

2、利用电场和磁场的类比教学,培养学生的比较推理能力.

情感目标

1、让学生了解我国古代对磁现象的研究(如指南针的发明),培养学生爱国主义思想,鼓励他们学习科学的热情.

2、通过对磁感线的引进,使得学生了解如何将抽象的概念转化为形象的模型进行研究的方法.

教学建议

教材分析

由于学生在初中时已经对磁场概念有了初步的了解,又由于前面学习了电学的有关知识,因此在学习磁场知识时会比较容易的接受.但是在学习用磁感线来描述磁场以及相关的几个特殊磁场的磁感线分布时会感到一定的困难,教材给了有关的插图,在“媒体资料”中,提供了相关的磁感线分布的三维动画,教师可以参考使用,有助于学生对磁感线空间形象的准确把握.

教法建议

教师在讲解磁场的有关概念时,可以参考电场的相关内容进行类比,如:电场线描述电场————磁感线描述磁场.在以后几节的学习上,可以大量采用这种方法,分析电场与磁场的相同之处,找出不同,帮助学生加深对“磁场”这一抽象概念的理解.

教学设计示例

第一节、磁场磁感线

一、素质教育目标

(一)知识教学点

1、了解磁场的产生和磁现象.

2、理解磁场有方向性,知道用磁感线反映磁场的方向.

3、能用安培定则熟练地判定电流磁场的方向.

4、掌握常见几种磁场的磁感线分布情况.

(二)能力训练点

1、通过观察演示实验,培养学生的观察能力、分析能力和空间想象能力.

2、利用电场和磁场的类比教学,培养学生的比较推理能力.

(三)德育渗透点

1、了解我国古代对磁现象的研究(如指南针的发明),培养学生爱国主义思想,鼓励他们学习科学的热情.

2、通过引进虚拟的磁感线教学,对学生进行物理问题变抽象为形象的方法论教育.

(四)美育渗透点

让学生体会磁感线图像的对称美、形式美.

二、学法引导

1、教师采用演示实验法引入,直观教学、利用电场对比教学.

2、学生认真观察实验现象,理解磁场的存在,类比电场理解磁场的性质及磁场的描绘.

三、重点·难点·疑点及解决办法

1、重点

(1)理解磁场的基本性质——力的作用和方向性.

(2)掌握安培定则及常见几种磁场的磁感线分布.

2、难点

磁场的空间分布与磁感线的对应联系.

3、疑点

(1)看不见、摸不着的磁场是客观存在的.

(2)描绘磁场的磁感线是虚拟的曲线.

4、解决办法

(1)通过演示实验,直观地反映磁场的存在,突破本节教学的重点和疑点.

(2)利用与电场的对比教学,帮助学生理解几种常见磁场磁感线的空间分布.

四、课时安排

1课时

五、教具学具准备

条形磁铁;蹄形磁铁;小磁针;导线和开关;电源;铁架台;细铁屑;玻璃板.

六、师生互动活动设计

1、教师先演示实验.直观引入磁场的存在,再通过实验演示,学生思考总结磁极之间、电流之间、电流与磁极之间的相互作用是通过磁场来传递的.通过类比电场、演示实验使学生理解磁感线的意义及分布规律.

2、课外组织学生阅读材料“电流磁效应的发现”深化对磁场的认识.

利用课外时间,要求学生做一做“验证环形电流的磁场方向”实验.

七、教学步骤

(一)明确目标

(略)

(二)整体感知

本节的教学分为两部分:1、理解磁场客观存在.电磁极间相互作用,推理磁场的客观存在,由演示实验进一步得出电流周围也存在着磁场,磁极与磁极、磁极与电流、电流与电流之间发生相互作用都是通过磁场来传递的、2、对磁场进行描述、通过演示实验得出磁场是有方向性的,用磁感线可以形象地描述磁场的方向性,通过演示实验形象直观显示条形磁铁和蹄形磁铁的磁感线、电流的磁场的磁感线可用安培定则来反映.

(三)重点、难点的学习与目标完成过程

1、引入新课

我国是世界上最早发现磁现象的国家,早在战国末年就有磁铁的记载,我国古代的四大发明之一的指南针就是其中之一,指南针的发明为世界的航海业作出了巨大的贡献.在现代生活中,利用磁场的仪器或工具随处可见,如我们将要学习的电流表、质谱仪、回旋加速器等等.进入21世纪后,科技的发展突飞猛进,一日千里,作为新世纪的主人,肩负着民族振兴的重任,希望同学们勤奋学习,为攀登科学高峰打好扎实的基础.今天,我们首先认识磁场.

2、磁场的产生

在玻璃板上放两辆小车,小车上各放置一条形磁铁,通过演示实验(如图)观察到,磁体同名磁极相斥,异名磁极相吸,且不需要接触就可以发生力的作用,显然这一力是场力,但磁铁并不带电,不存在电场,它就是另一种场——磁场、磁体周围存在着磁场,常见的条形磁铁、蹄形磁铁周围都存在着磁场、除磁体周围有磁场外,丹麦物理学家奥斯特首先发现电流周围也存在着磁场、观察演示实验(如图)看出,当通入电流时,小磁针转动,说明电流周围也有磁场、磁极与磁极之间、电流与磁极之间、电流与电流之间通过演示实验看出都会发生相互作用,这种作用都是通过磁场这种特殊物质发生作用的.

3、磁场的性质

在磁铁周围的不同位置放置一些小磁针,发现小磁针静止时,指向各不相同如图所示,这表明磁场中不同位置力的作用方向不同,因此磁场具有方向性.

与电场对比,在电场中,我们利用检验电荷的受力情况来反映电场的方向性,规定正电荷受的电场力方向为电场方向.

在磁场中,我们利用小磁针来规定磁场的方向,规定在磁场中的任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向,就是那一点的磁场方向.

4、磁感线

为了形象地反映电场的方向性,我们引进了电场线的概念.同理,在研究磁场时,我们引进磁感线来反映磁场的方向性,磁感线是一些有方向的曲线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同(即为小磁针的北极指向).利用磁感线,我们就可以比较直观地描述磁场的方向性.

不同的磁场,磁感线的空间分布是不一样的,常见的磁场的磁感线空间分布情况如下:

(1)条形磁铁的磁场

取一块玻璃板,在其上面撤上碎铁屑,下面放条形磁铁,轻轻敲击玻璃板,碎铁屑等效于无数个小磁针,形象地显现出磁场的方向,即为磁感线的平面分布情况(如图),所以条形磁铁的磁感线分布如图.

(2)蹄形磁铁的磁感线分布情况见图.

(3)电流磁场的磁感线分布情况见图.

a、通电直导线电流磁场(用右手螺旋定则判定).

b、通电环形电流磁场(用右手螺旋定则判定).

(4)磁感线的特点

a、磁感线是不相交的封闭曲线.

b、磁感线某点的切线方向表示该点的磁场方向.

c、磁感线的疏密可以反映磁场的强弱.

(四)总结、扩展

1、磁体周围,电流周围都有磁场,磁场是物质存在的一种形式,其性质是对放入其中的电流和磁体有力的作用.

2、磁场是有方向性的,可用磁感线直观形象地反映常见磁场的方向,但须注意磁感线是虚拟的曲线.

3、通电螺旋管内部的磁感线是平行轴线分布的.其外部磁感线由N极出发至S极,其内部是由S极重新回到N极的封闭曲线,所以螺旋管内部磁感线最密、磁场最强.

八、布置作业

九、板书设计

第一节磁场

一、磁场的产生

1、磁场的客观存在.

2、磁场的产生.

(1)磁体周围.(2)电流周围.

3、磁场的基本性质——力的作用.

二、磁场的方向

1、规定小磁针静止时北极的指向为磁场方向.

三、磁感线

1、磁感线的概念.

2、常见几种磁场的磁感线分布.

3、电流磁场的磁感线可用安培定则判定.

本文网址:http://m.jk251.com/jiaoan/9780.html

相关文章
最新更新

热门标签