导航栏

×
范文大全 > 高中教案

第一章 集合与简易逻辑--精选版

我相信每一位高中教师都接触过教案,教案是教师安排教学工作的依据,做好教案对我们未来发展有着很重要的意义,你是否在烦恼高中教案怎么写呢?本站收集了《第一章 集合与简易逻辑--精选版》,供您参考。

第一章集合与简易逻辑

本章概述1.教学要求[1]理解集合、子集、交集、并集、补集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.[2]掌握简单的含绝对值不等式、简单的高次不等式、分式不等式的解法;熟练掌握一元二次不等式的解法.[3]理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件.2.重点难点重点:有关集合的基本概念;一元二次不等式的解法及简单应用;逻辑联结词“或”、“且”、“非”与充要条件.难点:有关集合的各个概念的涵义以及这些概念相互之间的区别与联系;“四个二次”之间的关系;对一些代数命题真假的判断.3.教学设想利用实例帮助学生正确掌握集合的基本概念;突出一种数学方法——元素分析法;渗透两种数学思想——数形结合思想与分类讨论思想;掌握三种数学语言——文字语言、符号语言、图形语言的转译.

1.1集合(2课时)目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合教学过程:

第一课时一、引言:(实例)用到过的“正数的集合”、“负数的集合”、“不等式2x-1>3的解集”如:几何中,圆是到定点的距离等于定长的点的集合。集合与元素:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。指出:“集合”如点、直线、平面一样是不定义概念。二、集合的表示:用大括号表示集合{…}如:{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合如:a={我校的篮球队员},b={1,2,3,4,5}常用数集及其记法:1.非负整数集(即自然数集)记作:n2.正整数集n*或n+3.整数集z4.有理数集q5.实数集r集合的三要素:1。元素的确定性;2。元素的互异性;3。元素的无序性三、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集a记作aîa,相反,a不属于集a记作aïa(或aa)例:见p4—5中例四、练习p5略五、集合的表示方法:列举法与描述法1.列举法:把集合中的元素一一列举出来。例:由方程x2-1=0的解集;例;所有大于0且小于10的奇数组成的集合。2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。①文字语言描述法:例{斜三角形}再见p62符号语言描述法:例不等式x-3>2的解集3图形语言描述法(不等式的解集、用图形体现“属于”,“不属于”)。3.用图形表示集合(韦恩图法)p6略六、集合的分类1.有限集2.无限集七、小结:概念、符号、分类、表示法八、作业p7习题1.1

Jk251.com相关文章推荐

第一章__万能通用篇


第一章集合与简易逻辑第一教时教材:集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。过程:一、引言:(实例)用到过的“正数的集合”、“负数的集合”如:2x-1>3x>2所有大于2的实数组成的集合称为这个不等式的解集。如:几何中,圆是到定点的距离等于定长的点的集合。如:自然数的集合0,1,2,3,……如:高一(5)全体同学组成的集合。结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。指出:“集合”如点、直线、平面一样是不定义概念。二、集合的表示:{…}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}常用数集及其记法:1.非负整数集(即自然数集)记作:n2.正整数集n*或n+3.整数集z4.有理数集q5.实数集r集合的三要素:1。元素的确定性;2。元素的互异性;3。元素的无序性(例子略)三、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集a记作aîa,相反,a不属于集a记作aïa(或aîa)例:见p4—5中例四、练习p5略五、集合的表示方法:列举法与描述法1.列举法:把集合中的元素一一列举出来。例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例{不是直角三角形的三角形}再见p6例②数学式子描述法:例不等式x-3>2的解集是{xîr|x-3>2}或{x|x-3>2}或{x:x-3>2}再见p6例六、集合的分类1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合例题略3.空集不含任何元素的集合f七、用图形表示集合p6略八、练习p6小结:概念、符号、分类、表示法九、作业p7习题1.1

逻辑联结词--精选版


一、教学目标

(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

(2)理解“或”“且”“非”的含义;

(3)能用和简单命题构成不同形式的复合命题;

(4)能识别复合命题中所用的及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.

二、教学重点难点:

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

三、教学过程

1.新课导入

在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

学生举例:平行四边形的对角线互相平.……(1)

两直线平行,同位角相等.…………(2)

教师提问:“……相等的角是对顶角”是不是命题?……(3)

(同学议论结果,答案是肯定的.)

教师提问:什么是命题?

(学生进行回忆、思考.)

概念总结:对一件事情作出了判断的语句叫做命题.

(教师肯定了同学的回答,并作板书.)

由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投影片,和学生讨论以下问题.)

例1判断以下各语句是不是命题,若是,判断其真假:

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课

大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

(1)什么叫做命题?

可以判断真假的语句叫做命题.

判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做.除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

对“或”的理解,可联想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一个是成立的,即且;也可以且;也可以且.这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.

对“且”的理解,可联想到集合中“交集”的概念.中的“且”,是指“”、“这两个条件都要满足的意思.

对“非”的理解,可联想到集合中的“补集”概念,若命题对应于集合,则命题非就对应着集合在全集中的补集.

命题可分为简单命题和复合命题.

不含的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

由简单命题和构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由“且”构成的复合命题.

(4)命题的表示:用,,,,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

我们接触的复合命题一般有“或”、“且”、“非”、“若则”等形式.

给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的;应能根据所给出的两个简单命题,写出含有“或”、“且”、“非”的复合命题.

对于给出“若则”形式的复合命题,应能找到条件和结论.

在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

3.巩固新课

例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1);

(2)0.5非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若,则.

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

例3写出下表中各给定语的否定语(用课件打出来).

若给定语为

等于

大于

都是

至多有一个

至少有一个

至多有个

其否定语分别为

分析:“等于”的否定语是“不等于”;

“大于”的否定语是“小于或者等于”;

“是”的否定语是“不是”;

“都是”的否定语是“不都是”;

“至多有一个”的否定语是“至少有两个”;

“至少有一个”的否定语是“一个都没有”;

“至多有个”的否定语是“至少有个”.

(如果时间宽裕,可让学生讨论后得出结论.)

置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)

4.课堂练习:第26页练习1,2.

5.课外作业:第29页习题1.61,2.

以内进位加法的整理与复习 精选版


20以内进位加法的整理与复习

一、教学目标:

1.通过对20以内进位加法的整理,发现其中的规律,使学生进一步掌握计算方法。

2.培养学生观察、归纳、概括的能力。

3.渗透从多方面、多角度观察事物以及函数思想。

二、教学重点:整理与复习。

三、教学难点:观察规律。

四、教学准备:4个人一组,每组准备一套写有进位加法的36道题的卡片。

教者手记

20以内进位加法是学习多位数计算的基础,是进一步学习数学必备的基本功之一。搞好本单元的教学,对于提高学生的口算能力,进一步学习数的四则混合运算具有十分重要的意义。本节课在例题的选取上,力争取材于现实,来源于生活,贴近学生生活实际。在教学中,力争充分发挥学生的个性,使学生在已有知识的基础上以及在积极的实践活动中发现规律,使他们体验到探索成功的喜悦。在教法上,提倡多种思路,为学生提供发表自己意见的场所。在多种思路的基础上,侧重“凑十法”。

例:电脑显示本班9个学生做“老鹰捉小鸡”的游戏和5个同学跳绳的画面,让学生根据图意说三句话。根据提出的问题列出算式:9+5=()。设计的意图是通过学生实际生活的一个画面,引出课题,一方面能引起学生的兴趣,体会出新知的用途,学起来自然、真实、亲切,不仅能够达到学以致用的目的,同时也增添了课堂情趣,增强了学生的参与意识。

在学生理解图意、列出算式的基础上,提出问题:9+5=14,你是怎样想的?你能想出几种方法?想不出来的同学可以用小棒摆一摆。提出这样问题的目的,是为了改变教师主宰一切的现象和做法,使课堂真正成为共同发现知识的自由、民主的集体活动场所。充分相信学生,让所有学生主动参与教学活动的全过程,主动学习,主动获取,使学习变为儿童在一种积极心态调动下的原有知识经验与新问题、新知识的相互作用与融合,从而获得更加广泛的知识。根据小学生好奇心、好胜心强的特点,设计了第二问,因为学生根据数数,能够知道9+5=14,就会积极地从其他途径去探索,多角度、多方位思考问题,使思路由一条扩展到多条,由一个方向转移到多方向。遵循低年级儿童的年龄特征,学生的思维发展和知识的获得很多时候是从动手操作开始的,在思考问题的时候,借助学具,通过摆一摆,算一算,能从动作中发现、思索,获得直观的知识,初步获得9+5=14的思维过程。因此我安排了学生动手操作这一环节。这样设计问题,还能够使不同层次的学生都有展示自已的机会,都能得到发展。

在学生充分操作、思考的基础上,全班进行交流,学生汇报了多种思考方法:

3.因为10+5=15,所以9+5=14;

4.9+5=10+5-1=14;

5.因为9-5=4,所以9+5=14。

这种交流,不仅是方法的交流,更是学生思维的交流,展示以“凑十法”为基础的各种算法,既有展示个性的机会,又开拓了学生的思维。

学生掌握了基本计算方法,接着出示8只白鸭和5只黄鸭的画面,让学生用自己喜欢的方法计算出得数,在两次实践后,得出计算20以内进位加法用“凑十法”比较简便。最后用“凑十法”计算7+5=,6+5=,以此巩固“凑十法”,并提问:9+5,8+5,7+5,6+5,为什么有的5分成2和3,有的分成3和2,还有的被分成1和4?这样的问题,目的是引导学生去思考问题、发现问题。通过观察,归纳出给大数凑十比较简便,在观察中,总结出见9想1,见8想2,见7想3……有的学生还发现了9+几,和的个位都比几少1;8+几,和比几少2……最后,通过练习,逐步巩固,缩短思维过程,达到多重教学目的。

逻辑联结词【推荐】


一、教学目标

(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

(2)理解“或”“且”“非”的含义;

(3)能用和简单命题构成不同形式的复合命题;

(4)能识别复合命题中所用的及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.

二、教学重点难点:

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

三、教学过程

1.新课导入

在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

学生举例:平行四边形的对角线互相平.……(1)

两直线平行,同位角相等.…………(2)

教师提问:“……相等的角是对顶角”是不是命题?……(3)

(同学议论结果,答案是肯定的.)

教师提问:什么是命题?

(学生进行回忆、思考.)

概念总结:对一件事情作出了判断的语句叫做命题.

(教师肯定了同学的回答,并作板书.)

由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投影片,和学生讨论以下问题.)

例1判断以下各语句是不是命题,若是,判断其真假:

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课

大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

(1)什么叫做命题?

可以判断真假的语句叫做命题.

判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做.除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

对“或”的理解,可联想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一个是成立的,即且;也可以且;也可以且.这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.

对“且”的理解,可联想到集合中“交集”的概念.中的“且”,是指“”、“这两个条件都要满足的意思.

对“非”的理解,可联想到集合中的“补集”概念,若命题对应于集合,则命题非就对应着集合在全集中的补集.

命题可分为简单命题和复合命题.

不含的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

由简单命题和构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由“且”构成的复合命题.

(4)命题的表示:用,,,,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

我们接触的复合命题一般有“或”、“且”、“非”、“若则”等形式.

给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的;应能根据所给出的两个简单命题,写出含有“或”、“且”、“非”的复合命题.

对于给出“若则”形式的复合命题,应能找到条件和结论.

在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

3.巩固新课

例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1);

(2)0.5非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若,则.

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

例3写出下表中各给定语的否定语(用课件打出来).

若给定语为

等于

大于

都是

至多有一个

至少有一个

至多有个

其否定语分别为

分析:“等于”的否定语是“不等于”;

“大于”的否定语是“小于或者等于”;

“是”的否定语是“不是”;

“都是”的否定语是“不都是”;

“至多有一个”的否定语是“至少有两个”;

“至少有一个”的否定语是“一个都没有”;

“至多有个”的否定语是“至少有个”.

(如果时间宽裕,可让学生讨论后得出结论.)

置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)

4.课堂练习:第26页练习1,2.

5.课外作业:第29页习题1.61,2.

本文网址:http://m.jk251.com/jiaoan/3903.html

相关文章
最新更新

热门标签