导航栏

×
范文大全 > 高中教案

高中教案列方程解应用题

时间:2022-01-20 列方程解应用题 第五册列方程解应用题

教学内容

教科书118页例6及“做一做”。练习二十九1~5题。

一、素质教育目标

(一)知识教学点

1.使学生初步学会分析“已知有两个数的和与差,和两个数的倍数关系,求两个数各是多少”的应用题的数系,正确列出方程进行解答。

2.指导学生设末知数,表示两个数之间的关系。

3.训练学生分析这类应用题的数量关系。

(二)能力训练点

1.会解答所列方程形如axbx=c的应用题。

2.会正确找出应用题的等量关系。

3.会进行检验。

(三)德育渗透点

1.培养学生认真学习的好习惯。

2.渗透不同事物之间既有联系又有区别的观点。

(四)美育渗透点

通过题目中的等量关系,使学生感受到人民的卓越智慧,体会到源于生活。

二、学法指导

1.引导学生分析题意,找出等量关系。

2.指导学生试算,利用已有经验进行体验。

三、教学重点

用方程解答“和倍”“差倍”应用题的方法。

四、教学难点

分析应用题等量关系,设末知数。

教学过程设计

(一)复习准备

1.列方程并求出方程的解。

(1)x的5倍与x的3倍的和是40;

(2)某数的4倍比它的6倍少24。

2.根据下面的条件,找出数量间的相等关系。

(1)大米与面粉重量的和是1000千克;(大米的重量+面粉的重量=重量和。)

(2)每支钢笔比每支圆珠笔贵3.8元;(每支钢笔的价钱-每支圆珠笔的价钱=贵的价钱。)

(3)已看的页数比剩下的页数少76页。(剩下的页数-已看的页数=少的页数。)

3.用含有字母的式子表示。

(1)学校科技组有女生x人,男生人数是女生的3倍,男生有()人,男生女生一共有()人,男生比女生多()人;

(2)果园里苹果树的棵数是梨树的2倍,梨树有x棵,苹果树有()棵,苹果树和梨树一共有()棵,梨树比苹果树少()棵。

4.解答:果园里有桃树45棵,杏树的棵数是桃树的3倍。两种树一共有多少棵?

(1)学生审题画图,独立解答。

(2)学生解答后讲解:

解法1:

列式:45+45×3=45+135=180(棵)

解法2:

列式:45×(3+1)=45×4=180(棵)

答:两种树一共有180棵。

(二)学习新课

1.改变上题的条件和问题,使之成为例6。

果园里桃树和杏树一共有180棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?

(1)学生审题,将复习题的图改为例6。

(2)思考:

①这道题求什么?与以前学习的应用题有什么不同?(有两个未知数。)

②怎样设未知数呢?

如果设桃树有x棵,那么杏树就有3x棵;

比较哪种设法比较简便?为什么?

易解。

将线段图中的问号改为x或3x。

(3)根据哪个条件找数量间的相等关系?

根据桃树和杏树一共有180棵,找等量关系。

(4)列方程,解方程,

解:设桃树有x棵。或:

(5)检验,答题。

教师:检验时,可以把得数代入题目,看是否符合已知条件。

学生进行检验。

①看桃树和杏树一共的棵数是否是180棵,

45+135=180(棵)

②看杏树棵数是否是桃树的3倍,

135÷45=3

答:桃树有45棵,杏树有135棵。

2.试做:

果园里杏树比桃树多90棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?

(1)思考:

此题与例6相比,哪些地方相同?哪些地方不同?数量关系是怎样的?(倍数关系相同,不同点是把两种树的和改成了两种树的差。)

数量关系为:

(2)试做:

检验:

①135-45=90;

②135÷45=3。

答:桃树有45棵,杏树有135棵。

3.小结:

思考讨论:

(1)我们今天学习的应用题有什么特点?(今天学习的应用题,都是已知两种数量的倍数关系以及它们的和或差,求这两种数量各是多少。)

(2)这样的应用题,我们是怎样解答的?(一般根据倍数关系,设一倍数为x,另一个数用含有字母的式子表示;再根据这两种量的和或差,找出数量之间的相等关系,就可列出方程,并解方程,求出得数;最后还要把得数代入题目中去,看是否符合已知条件。)

(三)巩固反馈

1.根据条件,设未知数。

(1)快车的速度是慢车的2倍。

设()为x千米,那么()为2x千米;

(2)男生人数是女生的1.2倍。

设()为x人,那么()为1.2x人;

(3)大米的重量是面粉的3.5倍。

设()为x千克,那么()为3.5x千克;

(4)父亲的年龄是女儿的4倍。

设女儿的年龄为x岁,那么父亲的年龄为()岁;

(5)甲桶油的重量是乙桶的1.5倍,设乙桶油的重量为()千克,那么甲桶油的重量为()千克。

2.独立解答P118“做一做”,P119:4。

解答后讲解数量间的相等关系。

做一做:

根据“四年级、五年级共有学生330人”,得:

四年级人数+五年级人数=四、五年级人数和

↓↓↓

1.2xx330

P119:4。

根据“如果再往乙袋里装5千克大米,两袋就一样重了。”可知乙袋比甲袋少5千克,得:

甲袋重量-乙袋重量=乙袋比甲袋少的重量

↓↓↓

1.2xx5

3.将上题中的“如果再往乙袋里装5千克大米”改为“甲袋给乙袋5千克”应怎样解答?

画图理解:甲袋比乙袋多多少?

从图上看出甲袋比乙袋多5×2=10(千克)

根据:甲袋重量-乙袋重量=甲袋比乙袋多的重量

↓↓↓

1.2xx10

列方程:1.2x-x=10。

4.课后作业:P119:1,2,3。

课堂教学设计说明

列方程解含有两个未知数的应用题,学生第一次接触,因此设哪个未知数为x是本节课的难点。为了分散这一难点,在复习中采取填空的形式,引导学生根据倍数关系设未知数。在新授中,通过对两种设法的比较、分析,得出设一倍数为x比较简便。在练习中又设计了专项练习,学生在思考、讨论中,透彻地理解并掌握了这一规律。

例6学习了列方程解和倍应用题,改变其中一个条件,变成差倍应用题,着重引导学生比较两题的异同。讨论解答方法哪些地方相同,哪些地方不同,既可提高教学效率,又能将学生的注意力引导到比较两题的异同上面来,有助于形成两种解法的逻辑关系。

在学习了和倍、差倍应用题之后,及时引导学生找出这两类应用题的特点,并根据题目的特点总结出解题规律。既使学生掌握了解题方法,又提高了学生抽象概括的能力。【m.36GH.com 合同范本网】

板书设计

JK251.com延伸阅读

高中教案直线的方程


教学目标

(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出.

(2)理解直线方程几种形式之间的内在联系,能在整体上把握.

(3)掌握直线方程各种形式之间的互化.

(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

教学建议

1.教材分析

(1)知识结构

由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

(2)重点、难点分析

①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出.

解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

2.教法建议

(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.

直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

教学设计示例

直线方程的一般形式

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

(2)理解直线与二元一次方程的关系及其证明

(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点(2,1),斜率为2的,并观察方程属于哪一类,为什么?

答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点,的,并观察方程属于哪一类,为什么?

答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意都是二元一次方程吗?”

(二)本节主体内容教学的设计

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…

思路二:…

……

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式.

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

师生共同讨论,评价不同思路,达成共识:

回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即

(1)当时,方程可化为

这是表示斜率为、在轴上的截距为的直线.

(2)当时,由于、不同时为0,必有,方程可化为

这表示一条与轴垂直的直线.

因此,得到结论:

在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.

为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.

【动画演示】

演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

(三)练习巩固、总结提高、板书和作业等环节的设计在此从略

高中教案离心现象及其应用【精】


教学目标

知识目标:

1、知道离心运动及其产生的原因.

2、知道离心现象的一些应用和可能带来的危害.

能力目标:

1、培养学生应用理论知识解决实际问题的能力

情感目标

1、培养学生用理论解释实际问题的能力与习惯.

教学建议

教材分析

教材首先分析了离心现象发生的条件和离心运动的定义,接着从生产、生活的实际问题中说明离心运动的应用和危害,充分体现了学以致用的思想.

教法建议

学习离心运动的概念时,通过充分讨论,让学生明确几点:

第一:做圆周运动的物体,一旦失去向心力或向心力不足,都不能再满足把物体约束在原来的圆周上运动的条件,这时会出现物体远离圆心而去的现象.

第二:可补充加上提供的向心力F大于物体所需向心力时,(),表现为向心的趋势(离圆心越来越近)这对学生全面理解“外力必须等于时,物体才可做匀速圆周运动”有好处.

第三:离心运动是物体具有惯性的表现,而不是物体受到“离心力”作用的结果.有些学生可能提出,“离心力”的问题,教师可以说明那是在另一参照系(非惯性系)中引入的概念,在中学阶段不予研究.

关于离心运动的应用和防止,可引导同学讨论完成.

教学设计方案

教学重点:离心运动产生的条件

教学主要设计:

一、离心运动

(一)讨论:在光滑水平面上,用细绳系一个小球,使其在桌面上做匀速圆周运动.若细绳突然断了,小球将如何运动?若拉绳的力变小了,小球如何运动?若拉绳的力变大了,小球如何运动?

(二)展示“魔盘”娱乐设施的动画资料

讨论:“魔盘”上的人所需向心力由什么力提供?为什么转速一定时,有的人能随之一块做圆周运动,而有的人逐渐向边缘滑去?

(三)用提供的力与需要的向心力的关系角度解释上述现象,得到离心运动的条件和概念.(配合课件1)

二、离心运动的应用和防止:

可提出一些问题让学生讨论解决:如:

(1)洗衣机的脱水筒中的衣物上的水滴,在脱水筒工作时,水滴需要的向心力由什么决定?提供的向心力由什么决定?什么情况下,水滴将被甩出?

(2)在公路转弯处,为什么车辆行驶不允许超过规定的速度?

(3)为什么砂轮、飞轮等都不得超过允许的最大转速?等等

探究活动

观察并思考:

1、汽车、自行车等在水平面上转弯时,为什么速度不能过大?

2、滑冰运动员及摩托车运动员在弯道处的姿势,并分析其受力情况?

高中教案透镜及其应用的复习教案【荐】


文/杨鹏

教学目标:

1.知识与技能

(1)通过对本章节知识结构的总结,分析和评价,使学生对本章节的内容有比较全面的了解。提高信息技术的应用能力。

(2)进一步的理解凸透镜成像规律及其在生活中的应用。

2.过程与方法

(1)通过对知识结构的观察和分析,并自行得出评价标准,提高了学生的观察能力,和对信息进行分析、整理、加工、应用的能力。

(2)根据观察结果,进行分析,提出有针对性的建议和意见。

(3)通过对成像规律的分析,尝试解决生活中的一些实际问题。

3.情感态度与价值观

(1)通过对成像规律的应用,乐于将所学的物理知识应用到自然现象和日常生活中,去探索其中的奥妙。

(2)通过课外知识的引导,领略自然现象的美妙。

教学难点:

1.引导学生归纳知识结构评价标准。

2.师生对信息技术与课程整合的适应。

教学过程:

教学环节教学内容

主要教育目标

课题引入展示主题网站,布置学生观察的任务。

提高学生的学习兴趣。

观看作品从学生的作品中选择比较典型的作品供大家观看,并对作品的内容、技术、应用等方面进行分析,总结。

提高学生的观察能力,对信息的分析,加工能力。

分组讨论

通过先前的观看和思考针对作品,进行讨论。提高学生分析、归纳、总结的能力。学会合作,交流。

评价归纳将感性的认识进一步的提升,形成知识结构的评价标准。提高学生的概括能力,以及如何用物理语言进行表达。

复习规律利用课件填写凸透镜成像规律的表格。加强成像规律有理解,为其的应用打下基础。

巩固练习通过课件由学生对凸透镜成像规律进行总结。提高学生分析、归纳能力。

应用利用几个问题,将凸透镜成像规律应用到实际生活中。提高学生的知识应用能力,解决问题的能力。促进学生对生活的热爱,对科学技术的探索意识。

总结

对本节课内容进行小结。知识的回顾。

作业

修改自己的作品。内容的进一步理解。

教学过程详案:

1.引入

上节课后,我给大家布置了一个任务,让大家回去以后完成一个本章节的知识结构图,大家完成的情况如何呢?下面我们就一起来看看。

同学们点击主页上的“知识结构”。这里有我从大家的作品中选出的五个作品,现在给大家几分钟的时间分别看一看,看的过程中注意比较这五个作品的异同,那么你认为哪一个你觉得最好或者最适合你自己。

如果提前看完的同学,请先举手,再进入巩固练习。根据自己对本章节掌握的情况,选择适合自己的练习。

下面可以开始。

2.(学生开始看作品,教师对学生看的情况进行个别辅导)

3.大家已经看得差不多了,那么这些作品之间有什么异同,说说你们最喜欢哪一个,它好在那里,还有什么缺点?前后的四位同学相互讨论一下,推举一位同学准备发言。(讨论开始,时间约3分钟)

4.好了,哪一小组首先来谈谈自己的看法?

教师灵活处理

(1)如果没有小组发言:看来大家都想把机会让给别人,哪只有我来抽了。

(2)如果发言很正常:鼓励的语言或者将学生所说的内容的主干进行抽离。

(3)如果发言中有问题:一方面肯定回答正确的部分,一方面指出问题的所在。

(4)如果发言有些偏离了方向或学生对作品分析过多或重复:刚才几个小组的同学表达了他们的看法,还有什么不同的意见吗?或者不必针对作品的每一方面谈,重点谈谈你们最有特点的看法!

刚才大家作品也看了,也根据作品谈了自己的看法,但是似乎大家的观点似乎不是很统一(大家的意见都比较倾向于作品?)为什么大家会有一同的体会呢?现在我想请大家思考一个问题,你们刚才在评价作品的时候是用得什么标准呢?哪位同学先来谈谈你的看法?

(学生谈自己看法,教师对学生所提出的看法进行分析和总结,引导学生总结得出归纳知识结构的标准)

(包括:1.知识结构的完整性和正确性。2.知识结构之间的联系)

5.本章节中最重要的一个知识点是凸透镜的成像规律,首先我们来填一个表格。大家进入主页上的成像规律。

如果填写过程中有问题的学生,可以利用表格下方提供的提示辅助你完成这个练习。

提前完成的同学,请先举手,再进入巩固练习。

(学生开始填写表格)(教师巡视,并选择一个填写有错误的学生的答案进行全体广播)大家的表格都填写的好了,我选择了一位同学的答案,大家一起来看看,有没有什么问题。

(学生进行分析找出错误)

刚才大家已经对成像规律进行了分析,现在我们思考一个问题:题目一:在成像规律的实验中,物体从二倍焦距以外向透镜靠近的过程中,所成的像有什么变化?(回答的时候,可以利用课件一进行说明)

6.大家对成像规律有了近一步的认识,那么如何将它运用到我们的实际生活中呢?就让我们一起来看几个实际问题!

(1)问题一:给你一个透镜,怎样用最简单可行的方法判断它是不是凸透镜?

(学生回答,教师引导)

(2)问题二:如何让投影仪投在屏上的字更大一些?(方法、器材不限)

7.小结

今天这堂课,我们对本章节的知识结构有了进一步的认识,了解了归纳知识结构的一般规律。加深了对凸透镜的成像规律及其在生活中的应用的理解。

8.作业

课外大家根据归纳知识结构的标准将自己的作品做进一步的修改。

教学流程图:

高中教案力矩平衡条件的应用


教学目标

知识目标

1、理解力臂的概念,

2、理解力矩的概念,并会计算力矩

能力目标

1、通过示例,培养学生对问题的分析能力以及解决问题的能力

情感目标:

培养学生对现象的观察和探究能力,同时激发学习物理的兴趣。

典型例题

关于残缺圆盘重心的分析

例1一个均匀圆盘,半径为,现在在园盘靠着边缘挖去一个半径为的圆孔,试分析说明挖去圆孔后,圆盘的重心在何处.

解析:由于圆盘均匀,设圆盘的单位面积的重力为,

为了思考问题的方便,我们设想在大圆盘的另一侧对称地再挖去一个半径等于的小圆,如图所示,我们要求的是红色的小圆盘与灰色部分的重心位置,根据对称性,一定是大圆圆心与小圆圆心连线上,设,则.

如果我们用手指支撑在点,则这个物体会保持平衡,这两部分的重心对点的力矩满足平衡条件.这两部分的重力分别是及.

可列出力矩平衡方程

解方程,得出:.

关于一端抬起的木杆重力问题

例2一个不均匀的长木杆,平放在地面上,当我们抬起它的一端(另一端支在地面上),需要用500N的力;如果抬另一端,发现这回需要用800N才能抬起.请分析说明这根木杆的重力是多少?

解析:设木杆长为,重力为,已知抬起端时用力为500N,抬起端时用力大小为800N.可以假设木杆的重心距端为,距端为.

抬端时,以端点为轴由力矩平衡条件可得

抬端时,以端点为轴由力矩平衡条件可得

联立上面的两方程式可得

关于圆柱体滚台阶的问题

例3如图所示,若使圆柱体滚上台阶,要使作用力最小,试分析作用力的作用点应作用在圆柱体截面的什么位置?

解析:根据题意:

在圆柱体滚上台阶的过程中,圆柱体与台阶相接处为转动轴.

由固定转动轴物体的平衡条件可知:在匀速转动时圆柱体的重力的力矩应与作用力的力矩相等.又因为圆柱体的重力和它对转动轴的力臂是确定的,所以要使作用力最小其力臂一定最长,又因为转动轴在圆柱体的边缘上,作用力的作用点也要在圆柱体的边缘上,要想作用力的力臂最长就只有圆柱体截面的直径,如图;作用力的方向是垂直圆柱体截面直径向上,如图所示:

本文网址://m.jk251.com/jiaoan/6083.html

相关文章
最新更新

热门标签