导航栏

×
范文大全 > 高中教案

复数的向量表示【精】

认真准备一份教案是一名教师的职责所在,教案对于我们教师的教学非常重要,认真做好教案我们的教学工作会变得更加顺利,关于高中的教案要写哪些内容呢?希望《复数的向量表示【精】》能够为您提供帮助。

教学目标

(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;

(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;

(3)掌握复数的模的定义及其几何意义;

(4)通过学习,培养学生的数形结合的数学思想;

(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.

教学建议

一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.

二、重点、难点分析

本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议

1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.

2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系

如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.

相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.

2.

这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.

3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.

4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.

5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段OZ的长度.它也叫做复数的模或绝对值.它的计算公式是.

教学设计示例

教学目的

1掌握,复数模的概念及求法,复数模的几何意义.

2通过数形结合研究复数.

3培养学生辩证唯物主义思想.

重点难点

复数向量的表示及复数模的概念.

教学学具

投影仪

教学过程

1复习提问:向量的概念;模;复平面.

2新课:

一、:

在复平面内以原点为起点,点Z(a,b)为终点的向量OZ,由点Z(a,b)唯一确定.

因此复平面内的点集与复数集C之间存在一一对应关系,而复平面内的点集与以原点为起点的向量一一对应.

常把复数z=a+bi说成点Z(a,b)或说成向量OZ,并规定相等向量表示同一复数.

二、复数的模

向量OZ的模(即有向线段OZ的长度)叫做复数z=a+bi的模(或绝对值)记作|Z|或|a+bi|

|Z|=|a+bi|=a+b

例1求复数z1=3+4i及z2=-1+2i的模,并比较它们的大小.

解:∵|Z1|2=32+42=25|Z2|2=(-1)2+22=5

∴|Z1|>|Z2|

练习:1已知z1=1+3iz2=-2iZ3=4Z4=-1+2i

⑴在复平面内,描出表示这些向量的点,画出向量.

⑵计算它们的模.

三、复数模的几何意义

复数Z=a+bi,当b=0时z∈R|Z|=|a|即a在实数意义上的绝对值复数模可看作点Z(a,b)到原点的距离.

例2设Z∈C满足下列条件的点Z的集合是什么图形?

⑴|Z|=4⑵2≤|Z|<4

解:(略)

练习:⑴模等于4的虚数在复平面内的点集.

⑵比较复数z1=-5+12iz2=―6―6i的模的大小.

⑶已知:|Z|=|x+yi|=1求表示复数x+yi的点的轨迹.

教学后记:

板书设计:

一、:三、复数模的几何意义

二、复数的模例2

例1

探究活动

已知要使,还要增加什么条件?

解:要使,即由此可知,点到两个定点和的距离之和为6,如把看成动点,则它的轨迹是椭圆.

因此,所要增加的条件是:点应满足条件.

说明此题是属于缺少条件的探索性问题,解决这类问题的一般做法是从结论出发,并采用逆推的方法得出终结的结论,便理所求的条件.

jK251.COm精选阅读

复数的向量表示 精选版


教学目标

(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;

(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;

(3)掌握复数的模的定义及其几何意义;

(4)通过学习,培养学生的数形结合的数学思想;

(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.

教学建议

一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.

二、重点、难点分析

本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议

1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.

2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系

如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.

相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.

2.

这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.

3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.

4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.

5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段OZ的长度.它也叫做复数的模或绝对值.它的计算公式是.

教学设计示例

教学目的

1掌握,复数模的概念及求法,复数模的几何意义.

2通过数形结合研究复数.

3培养学生辩证唯物主义思想.

重点难点

复数向量的表示及复数模的概念.

教学学具

投影仪

教学过程

1复习提问:向量的概念;模;复平面.

2新课:

一、:

在复平面内以原点为起点,点Z(a,b)为终点的向量OZ,由点Z(a,b)唯一确定.

因此复平面内的点集与复数集C之间存在一一对应关系,而复平面内的点集与以原点为起点的向量一一对应.

常把复数z=a+bi说成点Z(a,b)或说成向量OZ,并规定相等向量表示同一复数.

二、复数的模

向量OZ的模(即有向线段OZ的长度)叫做复数z=a+bi的模(或绝对值)记作|Z|或|a+bi|

|Z|=|a+bi|=a+b

例1求复数z1=3+4i及z2=-1+2i的模,并比较它们的大小.

解:∵|Z1|2=32+42=25|Z2|2=(-1)2+22=5

∴|Z1|>|Z2|

练习:1已知z1=1+3iz2=-2iZ3=4Z4=-1+2i

⑴在复平面内,描出表示这些向量的点,画出向量.

⑵计算它们的模.

三、复数模的几何意义

复数Z=a+bi,当b=0时z∈R|Z|=|a|即a在实数意义上的绝对值复数模可看作点Z(a,b)到原点的距离.

例2设Z∈C满足下列条件的点Z的集合是什么图形?

⑴|Z|=4⑵2≤|Z|<4

解:(略)

练习:⑴模等于4的虚数在复平面内的点集.

⑵比较复数z1=-5+12iz2=―6―6i的模的大小.

⑶已知:|Z|=|x+yi|=1求表示复数x+yi的点的轨迹.

教学后记:

板书设计:

一、:三、复数模的几何意义

二、复数的模例2

例1

探究活动

已知要使,还要增加什么条件?

解:要使,即由此可知,点到两个定点和的距离之和为6,如把看成动点,则它的轨迹是椭圆.

因此,所要增加的条件是:点应满足条件.

说明此题是属于缺少条件的探索性问题,解决这类问题的一般做法是从结论出发,并采用逆推的方法得出终结的结论,便理所求的条件.

数学教案-复数的向量表示(小编推荐)


教学目标

(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;

(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;

(3)掌握复数的模的定义及其几何意义;

(4)通过学习复数的向量表示,培养学生的数形结合的数学思想;

(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.

教学建议

一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.

二、重点、难点分析

本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议

1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.

2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系

如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.

相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.

2.

这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.

3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.

4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.

5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段OZ的长度.它也叫做复数的模或绝对值.它的计算公式是.

教学设计示例

复数的向量表示

教学目的

1掌握复数的向量表示,复数模的概念及求法,复数模的几何意义.

2通过数形结合研究复数.

3培养学生辩证唯物主义思想.

重点难点

复数向量的表示及复数模的概念.

教学学具

投影仪

教学过程

1复习提问:向量的概念;模;复平面.

2新课:

一、复数的向量表示:

在复平面内以原点为起点,点Z(a,b)为终点的向量OZ,由点Z(a,b)唯一确定.

因此复平面内的点集与复数集C之间存在一一对应关系,而复平面内的点集与以原点为起点的向量一一对应.

常把复数z=a+bi说成点Z(a,b)或说成向量OZ,并规定相等向量表示同一复数.

二、复数的模

向量OZ的模(即有向线段OZ的长度)叫做复数z=a+bi的模(或绝对值)记作|Z|或|a+bi|

|Z|=|a+bi|=a+b

例1求复数z1=3+4i及z2=-1+2i的模,并比较它们的大小.

解:∵|Z1|2=32+42=25|Z2|2=(-1)2+22=5

∴|Z1|>|Z2|

练习:1已知z1=1+3iz2=-2iZ3=4Z4=-1+2i

⑴在复平面内,描出表示这些向量的点,画出向量.

⑵计算它们的模.

三、复数模的几何意义

复数Z=a+bi,当b=0时z∈R|Z|=|a|即a在实数意义上的绝对值复数模可看作点Z(a,b)到原点的距离.

例2设Z∈C满足下列条件的点Z的集合是什么图形?

⑴|Z|=4⑵2≤|Z|<4

解:(略)

练习:⑴模等于4的虚数在复平面内的点集.

⑵比较复数z1=-5+12iz2=―6―6i的模的大小.

⑶已知:|Z|=|x+yi|=1求表示复数x+yi的点的轨迹.

教学后记:

板书设计:

一、复数的向量表示:三、复数模的几何意义

二、复数的模例2

例1

探究活动

已知要使,还要增加什么条件?

解:要使,即由此可知,点到两个定点和的距离之和为6,如把看成动点,则它的轨迹是椭圆.

因此,所要增加的条件是:点应满足条件.

说明此题是属于缺少条件的探索性问题,解决这类问题的一般做法是从结论出发,并采用逆推的方法得出终结的结论,便理所求的条件.

溶液组成的表示方法【精】


重点难点溶质的质量分数有关计算;配制溶液的操作步骤。

教学方法讨论式教学法。

教学用具仪器:烧杯、玻璃棒、药匙、天平、量筒。

药品:硝酸钾、水蔗糖。

教学过程

第一课时

[引言]生活经验告诉我们在相同质量的水中加入一匙糖或两匙糖所形成的糖水的甜度不同,糖加的越多越甜,那么,从溶液的有关知识分析糖、水及糖水各是什么量?

[演示实验]用A、B两个烧杯各取50克水,烧杯A中加入5克蔗糖,烧杯B中加入10克蔗糖,并用玻璃棒搅拌至蔗糖全部溶解。

[讨论]1、在上述两种溶液中,溶质、溶剂各是什么?溶质、溶剂、溶液的质量各为多少克?

2、两种溶液哪一种浓一些?哪一种稀一些?为什么

[引入]浓溶液与稀溶液只是说一定是的溶剂中溶质含量的多少,它不能准确的表明一定量的溶液中所含溶质的多少,怎么才能确切的表明溶液的组成呢?

这是我们今天要解决的问题。

[板书]溶液组成有几种表示方法,初中先学习用“溶质的质量分数”表示溶液的组成。

[板书]一、溶质的质量分数

定义:溶质的质量与溶液的质量之比。

定义式:

溶质的质量分数=

[讨论]这两种食盐溶液中溶质的质量分数各是多少?

[板书]二、溶液中溶质的质量分数计算

[投影]例题1、见课本

[讨论]例题1中的溶质质量、溶剂质量、溶液质量各为多少克?

[板书]

解:溶质的质量分数=

这瓶溶液中溶质的质量分数为:

答:这瓶溶液中氯化钾的质量分数为14%。

[讨论]1、在14%中的100与溶解度概念中的100克的含义是否相同?

2、在14%中,溶质质量、溶剂质量、溶液质量各占多少?

[引入]溶质的质量分数在实际生活中应用广泛,而在实际生产中又往往需要把现有的溶液中溶质的质量分数增大或减小。

[讨论]在温度不变的条件下,如何使原有溶液的溶质质量分数增大或减小?

[演示实验]指导学生做实验,实验内容如下,用A、B两个烧杯各取90克溶质的质量分数为10%的硝酸钾溶液,再向A烧杯中加入10克硝酸钾,向B烧杯中加入10克水,并用玻璃搅拌至全部溶解。

[讨论]1、原溶液中溶质的质量是多少克?

2、在原溶液中的溶质质量、溶剂质量、溶液质量各是多少克?

3、向原溶液中增加10克硝酸钾(全部溶解)或增加10克水后,溶液中溶质质量、溶剂质量,溶液质量各是多少克?

4、上述形成的两种溶液中的溶质的质量分数各是多少?

[小结]在原溶液中,如增加溶质质量则溶质和溶液的质量同时增加,溶液中溶质的质量分数升高;如增加溶剂质量,则溶剂和溶液的质量同时增加,溶液中溶质的质量分数降低。

[本课知识小结]1、掌握有关溶质的质量分数的计算。2、理解向溶液中增加溶质或溶剂的质量后,溶质的质量分数的变化规律。

第二课时

重点难点根据溶解度求溶液中溶制裁的质量分数;溶质的质量分数和溶解度相互换算的计算。

教学方法启发式。

教学用品投影仪、投影片。

教学过程

[提问]1、什么叫溶解度?溶解度强调哪些方面?2、20时,食盐的溶解度是36克,这句话的含义是什么?其中溶质、溶剂、饱和溶液各多少克?3、什么叫溶质的质量分数?写出溶质质量分数的计算公式。

[设问]溶解度与溶质的质量分数概念间有什么区别和联系?

引导学生要件、找出区别和联系?

[投影]溶解度与溶质的质量分数概念间的区别和联系

溶解度

溶质的质量分数

条件

一定温度

不定温

状态

饱和

可饱和可不饱和

计算式

单位

[引入并板书]饱和溶液中溶质的质量分数=(S为饱和溶液中溶质的溶解度)

[投影]例题2(见课本)

[板书]解例题2

[投影]例题3

指导学生分析、讨论质量分数计算公式的变形,如何计算溶质、溶液的质量。

[板书]解例题3

[提问]如果我们要配制溶质质量分数一定的溶液,需要哪些仪器和操作呢?

[板书]配制溶质质量分数一定的溶液。

仪器:托盘天平、药匙、量筒、玻璃棒。

步骤:1、计算

2、称量、量取

3、溶解

[课堂小结]通过本节课的学习,使我们对溶质质量分数及溶解度的概念有了更深一步的了解,对它们之间的换算有了初步的认识,并且对配制溶质质量分数一定的溶液有了初步的了解。

复数的加法与减法【精】


教学目标

(1)掌握复数加法与减法运算法则,能熟练地进行加、减法运算;

(2)理解并掌握复数加法与减法的几何意义,会用平行四边形法则和三角形法则解决一些简单的问题;

(3)能初步运用复平面两点间的距离公式解决有关问题;

(4)通过学习平行四边形法则和三角形法,培养学生的数形结合的数学思想;

(5)通过本节内容的学习,培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).

教学建议

一、知识结构

二、重点、难点分析

本节的重点是复数加法法则。难点是复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不容易接受。

三、教学建议

(1)在中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:①当时,与实数加法法则一致;②验证实数加法运算律在复数集中仍然成立;③符合向量加法的平行四边形法则.

(2)复数加法的向量运算讲解设,画出向量,后,提问向量加法的平行四边形法则,并让学生自己画出和向量(即合向量),画出向量后,问与它对应的复数是什么,即求点Z的坐标OR与RZ(证法如教材所示).

(3)向学生介绍复数加法的三角形法则.讲过复数加法可按向量加法的平行四边形法则来进行后,可以指出向量加法还可按三角形法则来进行:如教材中图8-5(2)所示,求与的和,可以看作是求与的和.这时先画出第一个向量,再以的终点为起点画出第二个向量,那么,由第一个向量起点O指向第二个向量终点Z的向量,就是这两个向量的和向量.

(4)向学生指出复数加法的三角形法则的好处.向学生介绍一下向量加法的三角形法则是有好处的:例如讲到当与在同一直线上时,求它们的和,用三角形法则来解释,可能比“画一个压扁的平行四边形”来解释容易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便.

(5)讲解了教材例2后,应强调(注意:这里是起点,是终点)就是同复数-对应的向量.点,之间的距离就是向量的模,也就是复数-的模,即.

例如,起点对应复数-1、终点对应复数的那个向量(如图),可用来表示.因而点与()点间的距离就是复数的模,它等于。

教学设计示例

复数的减法及其几何意义

教学目标

1.理解并掌握复数减法法则和它的几何意义.

2.渗透转化,数形结合等数学思想和方法,提高分析、解决问题能力.

3.培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).

教学重点和难点

重点:复数减法法则.

难点:对复数减法几何意义理解和应用.

教学过程设计

(一)引入新课

上节课我们学习了复数加法法则及其几何意义,今天我们研究的课题是复数减法及其几何意义.(板书课题:复数减法及其几何意义)

(二)复数减法

复数减法是加法逆运算,那么复数减法法则为(+i)-(+i)=(-)+(-)i,

1.复数减法法则

(1)规定:复数减法是加法逆运算;

(2)法则:(+i)-(+i)=(-)+(-)i(,,,∈R).

把(+i)-(+i)看成(+i)+(-1)(+i)如何推导这个法则.

(+i)-(+i)=(+i)+(-1)(+i)=(+i)+(--i)=(-)+(-)i.

推导的想法和依据把减法运算转化为加法运算.

推导:设(+i)-(+i)=+i(,∈R).即复数+i为复数+i减去复数+i的差.由规定,得(+i)+(+i)=+i,依据加法法则,得(+)+(+)i=+i,依据复数相等定义,得

故(+i)-(+i)=(-)+(-)i.这样推导每一步都有合理依据.

我们得到了复数减法法则,两个复数的差仍是复数.是唯一确定的复数.

复数的加(减)法与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),即(+i)±(+i)=(±)+(±)i.

(三)复数减法几何意义

我们有了做复数减法的依据——复数减法法则,那么复数减法的几何意义是什么?

设z=+i(,∈R),z1=+i(,∈R),对应向量分别为,如图

由于复数减法是加法的逆运算,设z=(-)+(-)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,1为一条边画平行四边形,那么这个平行四边形的另一边2所表示的向量OZ2就与复数z-z1的差(-)+(-)i对应,如图.

在这个平行四边形中与z-z1差对应的向量是只有向量2吗?

还有.因为OZ2Z1Z,所以向量,也与z-z1差对应.向量是以Z1为起点,Z为终点的向量.

能概括一下复数减法几何意义是:两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.

(四)应用举例

在直角坐标系中标Z1(-2,5),连接OZ1,向量1与多数z1对应,标点Z2(3,2),Z2关于x轴对称点Z2(3,-2),向量2与复数对应,连接,向量与的差对应(如图).

例2根据复数的几何意义及向量表示,求复平面内两点间的距离公式.

解:设复平面内的任意两点Z1,Z2分别表示复数z1,z2,那么Z1Z2就是复数对应的向量,点之间的距离就是向量的模,即复数z2-z1的模.如果用d表示点Z1,Z2之间的距离,那么d=|z2-z1|.

例3在复平面内,满足下列复数形式方程的动点Z的轨迹是什么.

(1)|z-1-i|=|z+2+i|;

方程左式可以看成|z-(1+i)|,是复数Z与复数1+i差的模.

几何意义是是动点Z与定点(1,1)间的距离.方程右式也可以写成|z-(-2-i)|,是复数z与复数-2-i差的模,也就是动点Z与定点(-2,-1)间距离.这个方程表示的是到两点(+1,1),(-2,-1)距离相等的点的轨迹方程,这个动点轨迹是以点(+1,1),(-2,-1)为端点的线段的垂直平分线.

(2)|z+i|+|z-i|=4;

方程可以看成|z-(-i)|+|z-i|=4,表示的是到两个定点(0,-1)和(0,1)距离和等于4的动点轨迹.满足方程的动点轨迹是椭圆.

(3)|z+2|-|z-2|=1.

这个方程可以写成|z-(-2)|-|z-2|=1,所以表示到两个定点(-2,0),(2,0)距离差等于1的点的轨迹,这个轨迹是双曲线.是双曲线右支.

由z1-z2几何意义,将z1-z2取模得到复平面内两点间距离公式d=|z1-z2|,由此得到线段垂直平分线,椭圆、双曲线等复数方程.使有些曲线方程形式变得更为简捷.且反映曲线的本质特征.

例4设动点Z与复数z=+i对应,定点P与复数p=+i对应.求

(1)复平面内圆的方程;

解:设定点P为圆心,r为半径,如图

由圆的定义,得复平面内圆的方程|z-p|=r.

(2)复平面内满足不等式|z-p|<r(r∈R+)的点Z的集合是什么图形?

解:复平面内满足不等式|z-p|<r(r∈R+)的点的集合是以P为圆心,r为半径的圆面部分(不包括周界).利用复平面内两点间距离公式,可以用复数解决解析几何中某些曲线方程.不等式等问题.

(五)小结

我们通过推导得到复数减法法则,并进一步得到了复数减法几何意义,应用复数减法几何意义和复平面内两点间距离公式,可以用复数研究解析几何问题,不等式以及最值问题.

(六)布置作业P193习题二十七:2,3,8,9.

探究活动

复数等式的几何意义

复数等式在复平面上表示以为圆心,以1为半径的圆。请再举三个复数等式并说明它们在复平面上的几何意义。

分析与解

1.复数等式在复平面上表示线段的中垂线。

2.复数等式在复平面上表示一个椭圆。

3.复数等式在复平面上表示一条线段。

4.复数等式在复平面上表示双曲线的一支。

5.复数等式在复平面上表示原点为O、构成一个矩形。

说明复数与复平面上的点有一一对应的关系,如果我们对复数的代数形式工(几何意义)之

间的关系比较熟悉的话,必然会强化对复数知识的掌握。

本文网址:http://m.jk251.com/jiaoan/6335.html

相关文章
最新更新

热门标签