教学建议
1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.
2.重点、难点分析
(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.
(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.
3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:
∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.
这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.
应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.
4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.
我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有
有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:
很显然,这些表达式提供给我们丰富的边与角间的数量关系.
5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.
利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.
根据定义,有
另一方面,可以想像,当时,边与AC重合(即),所以
当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有
把以上结果可以集中列出下面的表:
0
1
1
0
6.教法建议:
(1)联系实际,提出问题
通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.
(2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.
(3)加强数形结合思想的教学
“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.
第一课时
一、教学目标
1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。
2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。
3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
二、学法引导
1.教学方法:引导发现和探索研究相结合,尝试成功教法。
2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。
三、重点、难点、疑点及解决办法
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。
3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。
4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。
四、教具准备
自制投影片,一副三角板
五、教学步骤
(一)明确目标
1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?
2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?
4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?
前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。
通过四个例子引出课题。
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。
(三)教学过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。
而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。
3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。
(四)总结、扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。
六、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。
七、板书设计
第二课时
一、教学目标
1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.
2.逐步培养学生观察、比较、分析、概括的思维能力.
3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.
二、学法引导
1.教学方法:指导发现探索法.
2.学生学法:自主、合作、探究式学习.
三、重点、难点、疑点及解决方法
1.教学重点:使学生了解正弦、余弦概念.
2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.
3.疑点:锐角的正弦、余弦值的范围.
4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.
四、教具准备
三角板一副
五、教学步骤
(一)明确目标
1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”
2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—正弦和余弦.
(二)整体感知
当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.
而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.
(三)教学过程
正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.
.
若把的对边记作,邻边记作,斜边记作,则,.
引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.
【例1】求出如下图所示的中的、和、的值.
解:(1)∵斜边,
∴,.
,.
(2),.
,
∴,.
学生练习教材P6~7中1、2、3题.
让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.
,,.
,,.
【例2】求下列各式的值:
(1);(2).
解:(1).
(2).
这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:
(1);(2);
(3);(4).
(5)若,则锐角.
(6)若,则锐角.
在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即
,(为锐角).
还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.
六、布置作业
教材P10中2,3.
预习下一课内容.
补充:(1)若,则锐角.
(2)若,则锐角.
七、板书设计
教学建议
1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.
2.重点、难点分析
(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.
(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.
3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:
∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.
这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.
应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.
4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.
我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有
有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:
很显然,这些表达式提供给我们丰富的边与角间的数量关系.
5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.
利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.
根据定义,有
另一方面,可以想像,当时,边与AC重合(即),所以
当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有
把以上结果可以集中列出下面的表:
0
1
1
0
6.教法建议:
(1)联系实际,提出问题
通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.
(2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.
(3)加强数形结合思想的教学
“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.
第一课时
一、教学目标
1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。
2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。
3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
二、学法引导
1.教学方法:引导发现和探索研究相结合,尝试成功教法。
2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。
三、重点、难点、疑点及解决办法
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。
3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。
4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。
四、教具准备
自制投影片,一副三角板
五、教学步骤
(一)明确目标
1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?
2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?
4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?
前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。
通过四个例子引出课题。
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。
(三)教学过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。
而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。
3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。
(四)总结、扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。
六、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。
七、板书设计
第二课时
一、教学目标
1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.
2.逐步培养学生观察、比较、分析、概括的思维能力.
3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.
二、学法引导
1.教学方法:指导发现探索法.
2.学生学法:自主、合作、探究式学习.
三、重点、难点、疑点及解决方法
1.教学重点:使学生了解正弦、余弦概念.
2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.
3.疑点:锐角的正弦、余弦值的范围.
4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.
四、教具准备
三角板一副
五、教学步骤
(一)明确目标
1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”
2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—.
(二)整体感知
当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.
而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.
(三)教学过程
正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.
.
若把的对边记作,邻边记作,斜边记作,则,.
引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.
【例1】求出如下图所示的中的、和、的值.
解:(1)∵斜边,
∴,.
,.
(2),.
,
∴,.
学生练习教材P6~7中1、2、3题.
让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.
,,.
,,.
【例2】求下列各式的值:
(1);(2).
解:(1).
(2).
这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:
(1);(2);
(3);(4).
(5)若,则锐角.
(6)若,则锐角.
在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即
,(为锐角).
还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.
六、布置作业
教材P10中2,3.
预习下一课内容.
补充:(1)若,则锐角.
(2)若,则锐角.
七、板书设计
教学建议
1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.
2.重点、难点分析
(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.
(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.
3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:
∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.
这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.
应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.
4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.
我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有
有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:
很显然,这些表达式提供给我们丰富的边与角间的数量关系.
5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.
利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.
根据定义,有
另一方面,可以想像,当时,边与AC重合(即),所以
当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有
把以上结果可以集中列出下面的表:
0
1
1
0
6.教法建议:
(1)联系实际,提出问题
通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.
(2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.
(3)加强数形结合思想的教学
“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.
第一课时
一、教学目标
1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。
2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。
3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
二、学法引导
1.教学方法:引导发现和探索研究相结合,尝试成功教法。
2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。
三、重点、难点、疑点及解决办法
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。
3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。
4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。
四、教具准备
自制投影片,一副三角板
五、教学步骤
(一)明确目标
1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?
2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?
4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?
前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。
通过四个例子引出课题。
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。
(三)教学过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。
而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。
3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。
(四)总结、扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。
六、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。
七、板书设计
第二课时
一、教学目标
1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.
2.逐步培养学生观察、比较、分析、概括的思维能力.
3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.
二、学法引导
1.教学方法:指导发现探索法.
2.学生学法:自主、合作、探究式学习.
三、重点、难点、疑点及解决方法
1.教学重点:使学生了解正弦、余弦概念.
2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.
3.疑点:锐角的正弦、余弦值的范围.
4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.
四、教具准备
三角板一副
五、教学步骤
(一)明确目标
1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”
2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—.
(二)整体感知
当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.
而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.
(三)教学过程
正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.
.
若把的对边记作,邻边记作,斜边记作,则,.
引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.
【例1】求出如下图所示的中的、和、的值.
解:(1)∵斜边,
∴,.
,.
(2),.
,
∴,.
学生练习教材P6~7中1、2、3题.
让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.
,,.
,,.
【例2】求下列各式的值:
(1);(2).
解:(1).
(2).
这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:
(1);(2);
(3);(4).
(5)若,则锐角.
(6)若,则锐角.
在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即
,(为锐角).
还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.
六、布置作业
教材P10中2,3.
预习下一课内容.
补充:(1)若,则锐角.
(2)若,则锐角.
七、板书设计
§7.2转盘游戏
教学目标:
1.在试验中进一步体会不确定事件的特点;
2.通过试验总结不确定事件发生的等可能性;
3.通过转盘游戏进一步突出事件发生的可能性是有大小的,同时复习一些基本统计量的意义、运算和有理数的加减运算;
4.能列举简单事件所有可能发生的结果。
教学重点:1.不确定事件的特点和不确定事件发生的等可能性;
2.列举简单事件所有发生的可能结果。
教学难点:列举简单事件所有发生的可能结果。
教学过程:
一、复习引入:
指针指在什么颜色区域的可能性大?
条件:任写6个-10至10之间的数.
二、课堂活动:
1.游戏规则:
(1)任意抽一组数,算出这组数的平均数;
(2)自由转动转盘,当转盘停止转动后,指针落在某个区域;
(3)根据转动和刚才的计算得到结果.
2.议一议:
(1)这个转盘转到哪部分的可能性大?
(2)在做上述游戏的过程中,你如何调整卡片上的数据的?
(3)将各小组活动进行汇总,”平均数增大1”的次数占次数的百分比的多少?”平均数减少1”的呢?
(4)如果将这个实验继续做下去,卡片上所有数的平均数会增大还是减少?
3.试一试:
请设计一个转盘,使得它停止转动时,指针落在绿色区域的可能性比落在白色区域的大.小明设计的转盘有三种颜色,你觉得可能吗?
4.练一练:
下面是两个可以自由转动的转盘,分别转动这两个转盘,你认为转动哪种颜色的可能性最大?说明理由.
5.小结:
生活中有哪些现象是一定发生的、很可能发生的、可能发生的、不太可能发生的、不可能发生的?
6.作业:
1.见作业本.
2.书面设计一个对双方都公平的游戏.
2.1比0小的数(一)教学设计
江苏教育学院附属高级中学崔宁宁
【设计思路】本节课是第二章的起始课,也是学生进入初中的第一节概念课.因此,为了让学生感受数学就处处存在于我们生活周围,本节课以现实生活为素材,从学生的生活经验、经历和已有的知识出发,创设恰当的情境:气温的表示和一个小游戏的结果的表示,让学生意识到他们小学里所学的数已经不够用了,意识到引入其他新数的必要性.紧接着展现现实生活中常见的情境图片引进负数.
本节课的第二个处理点是将“有理数的分类”提前,而将“正、负数可以表示相反意义的量”放置第二课时,因为可以说“正、负数可以表示相反意义的量”是对正、负数的一个应用,这样在第二课时不仅可以对有理数进行复习,而且还对有理数进行应用,让学生感受学数学的目的是为了用数学.
本节课的第三点就是对有理数进行分类.这点主要是用指出有理数所包含的全部对象的方法给出有理数的定义及分类,而有理数的分类实际上是有理数的定义的另一种表达形式.这里让学生初步感受分类思想,也开始逐渐地培养学生的分类思想.
【教学过程】
一、教学目标
1.根据已有的知识经验,借助生活中的实例认识负数,理解正数、负数的不同意义,体会负数引入的必要性;
2.理解有理数的意义,并会将有理数分类;
3.初步培养学生的分类思想.
二、教学重点、难点
重点:1.辨别正数与负数,理解负数的意义;
2.有理数的分类.
难点:1.负数概念的建立;
2.有理数的两种分类方法.
三、教学方法及手段:讨论法、讲授法
四、教学工具:多媒体课件
五、教学过程
1、创设情境引入新课
首先引导学生回忆:小学学过哪些数?是不是我们生活中遇到的任何量都可以用它们来表示呢?(可先让学生举例回答)
由此创设下列情境:
情境一:据气象台播报,2005年1月12日,南京的最高气温为零上9度,最低气温为零下3度,问:若将零上9度记为9℃,零下3度能记为3℃吗?
情境二:某班举行数学竞赛评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;四个代表队答题情况如下表:
下载完整版:2.1比0小的数(一)教学设计(如果不能下载,请右击用迅雷下载)
上一篇:2.1比零小的数(2)
下一篇:没有了
【教学目的】
1.使学生了解我国冬、夏季气温的分布特点及其成因。
2.使学生了解我国温度带的划分和分布。
3.进一步培养学生阅读等温线图、气温年变化曲线图的技能,以及运用图表分析问题的能力。
【教学重点】
1.我国冬、夏季气温的分布特点。
2.我国温度带的分布。
【教学难点】
阅读我国一月、七月气温分布图,分析概括我国冬、夏季气温的分布特点及其成因。
【教具准备】
1.我国一月平均气温挂图
2.我国七月平均气温挂图
3.我国温度带分布挂图
4.用小黑板或投影片绘制以下表格
(1)我国各温度带≥10℃的积温表
(2)我国温度带分布地区的填充表
(3)我国各温度带的作物熟制、主要农作物品种表
【教学课时】
本节教学可安排2课时。
【教学过程】
(新课引入)
复习已学知识,引入新课。具体步骤如下:
[提问]我们在初一学过“世界的气候和自然带”。请同学们回忆一下,世界气温的分布规律是怎样的?影响气温分布的因素主要有哪些?
[复习]教师提示,启发引导学生得出答案。
[承转]那么,我国气温分布有哪些特点,主要受哪些因素的影响,同学们知道吗?这就是今天我们要学习的内容。
(这节课也可采用开门见山的方式引入。教师讲述:第四章的标题为“中国的天气和气候”,上一节课我们主要学习的是天气的有关知识,今天我们要开始学习我国的气候。首先,让我们看看我国气温分布的情况是怎样的。)
[板书]
一、气温的分布
[展示图片]哈尔滨“冰灯游园会”和广州“迎春花市”的照片(也可让学生看课本封页彩照16和17)。
[提问]这两张照片都是春节前后拍摄的。从照片上看,冬季我国南北两地的气温有什么差异?
[讲述]哈尔滨的冰灯中外闻名。当地人利用冬季封冻的松花江天然冰块,精心雕刻成各种奇异壮观的冰雕艺术品,在各色灯光的映照下,色彩缤纷。冰灯游园会一般从元旦开始,一直延续到春节以后。每年都吸引很多游人冒着严寒前来观赏。而南国的广州,素有“花城”的美称。但花色最多、品种最齐、赏花人最多的要算一年一度的迎春花市了。迎春花市从春节前三天开始,一直到除夕之夜。虽然这时正是我国最冷的季节,但在这里却是百花盛开,春意浓浓。可见,冬季我国南北气温相差十分悬殊。
[板书]1.冬季南北气温相差悬殊
[展示挂图]我国一月平均气温图(或让学生阅读课本图4·5)。
[读图回答]1.黑龙江省最北部的一月平均气温大约是多少摄氏度?(约为-30℃)
2.海南省的一月平均气温大约是多少摄氏度?(学生回答:20℃左右)
3.计算一下,我国南北一月平均气温大约相差多少度?(相差约50℃)
4.自北向南,我国气温分布有什么规律?(愈往南,气温愈高)
5.在图上找出0℃等温线,在课本图4·5上用色笔描出,看看它大体与哪条河流和山脉的分布一致。(教师向学生说明,一月0℃等温线大致通过秦岭-淮河一线,这是我国一条重要的地理分界线,要求学生记住)
[归纳]从一月平均气温图上可以看出,我国冬季气温自北向南增高;等温线排列密集,说明南北温差大;一月0℃等温线大致通过秦岭-淮河一线,向西沿青藏高原的东南边缘。
那么,为什么我国冬季南北气温相差如此悬殊呢?
[读表]阅读课文中的“冬至日下列三地的正午太阳高度、昼长时间表”,讨论以下问题:
1.比一比,在冬至日,漠河、北京、广州三地的太阳高度和昼长时间有什么不同?(学生读表回答)
2.想一想,在冬至日,为什么我国北方的正午太阳高度比南方低,昼长也比南方短?(教师提示,学生回答)
[讲述]纬度位置是形成我国南北温差悬殊的一个重要原因。冬季,太阳光直射在南半球,对北半球来说,纬度愈高,正午太阳高度愈低,白昼愈短,得到的太阳光热也就愈少,因而气温愈低;反之,纬度愈低,气温则愈高。我国位于北半球,而且幅员辽阔,南北所跨近50个纬度,因此气温相差很大。
我国南北温差大的另一个原因是冬季风的影响。请同学们阅读课本图4·6。
[提问]1.从冬季风的源地、风向考虑,对我国北方和南方气温的影响,在程度上有什么差别?(教师提示,学生回答)
2.从图上看,我国青藏高原、云贵高原、台湾岛、海南岛等地难以受冬季风(西北季风)的影响,这是为什么?(教师提示,学生回答)
[讲述]每年冬季,来自西伯利亚和蒙古一带的冷空气频频南下,我国北方首当其冲。寒冷的冬季风加剧了北方的严寒。而我国南方由于距冬季风源地遥远,加之中间有重重山岭作屏障,所以受冬季风的影响弱,降温程度远比北方小。由此可见,冬季风的影响使我国南北气温相差更加悬殊。
[承转]上面讲述的是我国冬季气温分布的情况及其形成原因,下面我们再看看我国夏季气温分布的情况是怎样的。
[展示挂图]我国七月平均气温图
[读图]1.七月,我国大部分地区平均气温在多少摄氏度以上?(学生回答:我国大部分地区七月平均气温在20℃以上。)
2.黑龙江省北部和海南省南部的七月平均气温各约多少摄氏度?我国南北气温大约相差多少摄氏度?(学生回答:黑龙江省北部约为16℃,海南省南部约为28℃,我国南北七月平均气温相差仅12℃左右,气温差别不大。)
3.我国七月平均气温最低的地区分布在哪里?为什么?(教师提示,学生回答:我国七月平均气温最低的地区分布在青藏高原。因为这里海拔特别高,所以成为我国夏季气温最低的地区。)
[归纳]从七月平均气温图上我们看到:夏季,除了青藏高原、天山和大小兴安岭外,我国大多数地方气温均在20℃以上,全国普遍高温。
[板书]2.夏季南北普遍高温
[读表讲述]为什么夏季我国南北气温相差不大呢?请同学们阅读课文中的“夏至日下列三地的正午太阳高度、昼长时间表”。
夏季,太阳光直射在北半球。我国大多数地方的正午太阳高度都较大。北方的太阳高度虽然比南方要低一些,但白昼时间比南方长,得到的太阳光热并不比南方少多少。因此,我国夏季南北气温相差不大,全国大部分地区普遍高温。
[练习]请同学们完成本节课文后的选做复习题l、2。
[板书]二、温度带的划分及其分布
[提问]我们知道,地球上有热带、北温带和南温带、北寒带和南寒带五个温度带。请同学们想一想:划分地球五带的依据是什么?我国主要位于哪个温度带?(教师指示,学生回答:地球上的五带是根据温度高低和热量多少来划分的,我国绝大部分位于北温带。)
[讲述]那么,用什么指标来衡量一个地方的温度高低和热量多少呢?人们一般用农作物生长期内积温的多少来反映?
我们知道,温度是影响农作物生长与发育的主要因素。由于大多数农作物只有在日平均气温稳定升到10℃以上时才能活跃生长,因此我们把日均温达到10℃以上的持续时期视为作物的生长期。把作物生长期内,每天的日平均气温累加起来,得到的温度总和叫做积温或活动积温,写作≥10℃积温。
[板书]1.温度带划分的指标:≥10℃积温
[展示表格]用小黑板挂出我国各温度带的≥10℃积温表。让学生说出我国共有哪几个温度带,从家温带到热带≥10℃积温的变化情况。
[挂图]挂出我国温度带分布图。
[指图讲述]根据≥10℃积温的多少,我国自北向南可以分为五个温度带:寒温带、中温带、暖温带、亚热带和热带。另外,由于青藏高原海拔特别高,形成了一个天高地寒的高原气候区。
[板书]2.主要温度带:寒温带、中温带、暖温带、亚热带、热带、青藏高原气候区。
[读图回答]阅读我国温度带分布挂图或课文图4·8,回答以下问题:
1.我国寒温带分布在什么地区?中温带主要分布在哪些地区?(教师指图,学生回答。)
2.我国暖温带和亚热带分别分布在什么地区?这两个温度带之间的分界线,大致与一月平均气温的哪条等温线一致?(教师指图,学生回答。教师再补充、纠正。)
3.学校所在地属哪个温度带?
[板书]3.温度带的分布
[填表归纳]在以上读图的基础上,教师出示我国各温度带分布的填充表(见下表),指导学生填出各温度带的分布地区。
[讲述]不同的温度带,积温的多少不同,反映了不同的温度和热量条件,从而适宜栽培和推广的农作物品种不同,作物熟作也不一样。
[展示表格]用小黑板挂出我国各温度带的作物熟制和主要农作物品种表,或阅读课文中的“我国各温度带的积温和作物熟制”表。
[提问]请同学们说出各温度带的作物熟制和主要农作物品种有什么不同。(学生读表回答)
[练习]完成课文“做一做”练习:
1.读哈尔滨和广州各月气温曲线图(图4·9),算一算一月份两地气温相差多少摄氏度?七月份两地气温相差多少摄氏度?(学生读图回答:一月份两地气温相差约34℃,温差悬殊;七月份两地相差约5°~6℃,温差不大。)
2.读我国一月平均气温图(图4·5),看四川盆地和长江中下游平原的气温各约多少摄氏度?为什么四川盆地冬季气温高于同纬度地区的长江中下游平原?(教师提示,学生回答。从我国一月平均气温图上看,四川盆地在4℃以上,长江中下游平原在4℃以下。这两个地区虽然纬度相似,但四川盆地的地形封闭,受冬季风的影响要比长江中下游平原小得多,所以冬季气温比长江中下游平原高。)
3.当地属什么温度带?冬、夏季气温如何?有哪些主要的农作物品种?作物一年可以几熟?(学生议论,教师提示、说明。)
(布置作业)
1.选做复习题3。
2.在填充图册上完成有关的填图练习。
【板书设计】
第二节气温的分布和温度带
一、气温的分布
1.冬季南北气温相差悬殊
2.夏季南北普遍高温
二、温度带的划分及其分布
1.温度带划分的指标:≥10℃积温
2.主要温度带:寒温带、中温带、暖温带、亚热带、热带、青藏高原气候区
3.温度带的分布
教学目标
1、通过阅读了解是南亚面积最大国、世界第二大人口国及世界农业大国,人口、民族、种族复杂;
2、根据热带季风气候的气温曲线和降水量柱状分布图,初步学会分析南亚地区旱涝灾害频繁的原因及其影响;
3、通过分析地形、气候图及农作物种类分布图,分析农业生产与自然条件的关系;
4、通过讲述独立前后的经济概况,使学生认识到争取和维护民族独立,是经济发展的重要保证。了解工业的发展状况及主要的工业区。记住的主要城市。
5、了解的人口压力,使学生认识到人口的增长一定要与经济的增长相适应。
教学建议
关于的教材分析
是南亚面积和人口第一位的国家,所以其自然条件与南亚的差不多,为了避免重复,本节重点突出了的人文地理特征。
是世界著名的文明古国,古代的疆域与现在的疆域不同。为避免将地理课上成历史课,重点从古代的文化成就、城市建筑、物产、宗教与语言等方面阐述。
在“农业发展与人口压力”部分,主要侧重农产品的分布自然条件之间的关系。同时通过分析经济发展的有利与不利因素,人口过度增长对农业生产的压力,辩证的认识人类与环境之间的关系。
对于“发展中的民族工业”,使学生充分认识到经济发展的基本情况,同时明确工业的发展与自然条件也是密不可分的。进而了解主要的城市。
农业历史悠久,矿产资源丰富,有发展经济的良好条件,但是只有在独立后经济才有较快发展,成为发展中国家中经济较为发达的国家。
关于的教法建议
是世界地理中接触到的第一个世界文明古国,首先应使同学了解文明古国的含义,了解灿烂的文化与悠久的历史,可布置学生提前查找资料进行演讲,或通过媒体资料介绍的文化、艺术、建筑等。提高学生学习的兴趣;同时使学生了解的近代历史状况,为后面经济发展打基础。
对于的农业发展与人口压力部分,可以采取以下步骤:
1、分析农业发展的有利条件与不利条件
2、读图分析农业生产的分布与自然条件的关系。
3、归纳表格
4、世界第二大人口国,阅读人口增长曲线图,得出人口增长过快对农业生产压力大
对于工业生产与主要的城市,可以采用谈话讨论法,重点培养观察、分析“矿产资源和工业分布图”的能力:
1、有哪些工业部门?
2、工业区主要分布何处?为什么?
3、主要的工业城市有哪些?
4、归纳表格
关于第一课时的教学设计示例1
【教学重点】的农作物分布与自然条件的关系;农业发展与人口压力。
【教学难点】的农作物分布与自然条件的关系
【教学用具】景观图片;地形与降水图;农作物分布图;人口增长曲线图
【教学过程】
(引入)展示景观图片(也可为相应的投影片),这是哪个国家的?
(板书)第二节
(提问)谈谈你对的了解
(学生自由回答)
(总结板书)
一、世界文明古国
悠久的历史与文化
民族与宗教
(引申提问)世界上的文明古国除了外,还有哪几个?大家知道这四个国家位置上有什么共同的特征吗?(课外知识—紧邻大河)
为什么会出现这种现象?
(引导学生讨论)
(教师注意总结)农业—生活—交通
(承转)为世界人口第二大国,是一个发展中国家,是一个农业大国。一个国家农业发展对环境的依赖主要表现在地形和气候两方面,通过前面的学习,你认为发展农业的有利条件及不利条件分别是什么?
(学生讨论回答,教师补充):光热(位于热带,光热充足)、水(降水适宜较好,多就涝灾少就旱灾)、土(土地肥沃,广阔的冲积平原,是亚洲耕地面积最大的国家)
(提问,出示农业分布图)
主要农作物有什么?
根据地图及所学内容分析农作物的分布与地形、气候等因素有什么关系?
(学生回答,教师总结)
地形、气候等自然条件对农作物的分布有着重要的影响,发展农业必须充分利用当地自然条件,种植与之相适应的农作物,才能提高农作物产量。
(板书)二、农业生产与人口压力
1、农业发展的条件:有利、不利
2、因地制宜发展农业生产
农作物
分布
与地形、气候关系
水稻
东北部,半岛沿海地区
水稻需水较多,平原降水充足
小麦
德干高原西北部、恒河上游地区
小麦棉抗旱能力强,棉花后期生长需更多光照,这些地区光照足,降水较少,地势和缓
棉花
德干高原西北部
茶
东北部
雨水充足,有排水较好的低山
黄麻
恒河三角洲
地势低平,气候湿热
(提问)是个农业大国,但是粮食出口较少,请分析原因?
(出示人口增长曲线图)
(学生讨论、回答)
(教师总结)
人口增长太快,数量巨大,急剧增长的人口抵消了取得的成果,对农业生产构成很大的压力。
(引导讨论)如何解决人口与粮食的矛盾?(开放性问题)
控制人口数量、提高人口素质;提高科技种田;提高单产;培育良种;修水库等等
(板书)3、人口对农业生产的影响
(教师归纳板书)
【板书设计】
第二节
一、文明古国
二、农业发展与人口压力
农业发展的条件
因地制宜发展农业生产
人口对农业生产的影响
第123页
第一单元亲近社会复习提纲第一课第一框☆1.人类创造物质生活资料的途径是什么?(p2.2)☆2.推动社会变化发展的原因是什么?(p3.2)☆3.我国目前主要面临那些问题?(p5.5)☆4.我国建设社会主义和谐社会的目标是什么?(p5.倒1)第一课第二框1.☆什么是人类社会?个人为什么离不开社会?(p6.倒1)2.为什么说“人既有自然属性,又有社会属性”?☆人的本质属性是什么?(p7.1)3.社会能不能离开个人?为什么?(p7.中)4.了解时事的途径有哪些?了解时事有什么好处?(p7.倒1)5.青少年为什么要关心社会?(p8)第一课第三框1.☆什么是亲近社会?为什么要亲近社会?怎样亲近社会?(p9)2.对社会的冷漠情绪主要有哪些表现?我们应该怎样做?(p9)3.☆什么是社会公德?☆我国社会公德的主要内容是什么?为什么要遵守社会公德?(p10)4.青少年怎样做到明辨是非,抵制社会不良现象?(p11.中)第一课第四框1.为什么要履行职责?(即“为什么要服务社会?”)(p12.1)2.公民最重要的责任是什么?(p12.1)3.怎样亲近社会、服务社会?(p12-15)第二课第一框
★1.汉字的地位、特点、作用和意义?(p18)
2.文化的含义?(p18)
★3.中华文化的来源和特点?(p19.1)4.如何保护文化遗产?(p22.1)第二课第二框
★1.中国结有什么意义?(p23.3)
★2.增强民族文化认同感有什么要求?(p24.2)
★3.对本民族文化认同的重要意义是什么?(p26.2)
4.为什么要正确对待外来文化?(p26-27)
★5.怎样正确对待外来文化?(p28.1)6.怎样正确对待中国的传统文化?(p28.2)第二课第三框
1.为什么要大力弘扬中华民族精神?(p30.1-2)
★2.中华民族精神的内涵是什么?核心是什么?(p30.4)
★3.谁是民族精神的继承者和创造者。在中国共产党的领导下,中华民族精神有了哪些丰富和发展。(p30.6)
4.弘扬和培育民族精神有什么重要意义?(p31.6)
5.我们应该如何弘扬和培育民族精神?(p31.6)第三课第一框
★1.什么是挫折?(p33.倒1)
★2.挫折会引起人们心理和行为上怎样的反应?(p33.倒1)
3.产生挫折的原因有那些?(p34.中)
★4.挫折的影响有那些?(pp35.倒1)5.怎样正确应对挫折?(p36.2)第三课第二框★1.为什么树立正确的学习观念?(p37.1)★2.初中学生应树立哪些学习观念?(p37.2)3.怎样正确对待学习压力?(p38.3)4.考试焦虑的成因?(p39.1)★5.怎样克服考试焦虑?(p39.倒1)第三课第三框
1.什么是耐挫力?(p41.1)
★2.挫折与创新是什么关系?(p42.1)3.为什么要勇于创新?(p42.倒1,p44.1)
教学目标
1.学习作者由一事物引发丰富联想的写法。
2.从文中得出启示。
重点、难点
1.重点:学习作者丰富的联想。
2.难点:通过联想感悟作者所要抒写的情怀。
教学时间
一课时
教学过程
一、预习
二、导入
作者及背景介绍
三、阅读课文,整体感知文章。
四、分析课文
(一)讨论文章结构
(二)质疑
1.一颗晚熟的草莓引发了作者哪些联想?
香甜的草莓把作者的思绪引回草莓最盛的六月时光,再从六月联想到眼前秋意渐浓的九月,由季节的变化联想到曾经拥有过的青年时光以及似水流年正悄无声息地改变着我们的心性和容颜,思想和感情。
2.通过联想作者抒写了怎样的思想和感情?
抒发了作者对时光易失的感概,及对人生秋天的赞美,表达了作者积极乐观情怀。
3.试比较第1、3两段对九月景物描写的不同?
第一段重在表现夏意正浓:天空像蓝宝石一样晶莹璀璨,挺拔的槲树生意盎然,到处欢歌笑语。
第三段却重在表现秋的气息:树是绿的,但只需吹一阵寒风,顷刻之间就会枯。天空是蔚蓝的,但不久就会变得灰惨惨;
4.从文章的思路看写作目的是什么?
作者漫步在九月的田野:放眼四望,觉得“自从我们五月来到乡下以来,一切基本上没有变,依然是那些碧绿的树,湛蓝的天,欢快的心田。”但是马上“觉察到已不是六月”。作者在第一段描写完天空,树木的句子后都加上了一个“但”字,这样写的目的是为了启发人们思考,为了启发人们对这两个季节进行深入细致的比较,从而感受时间给大自然留下的印记,为下文对青春易失、生命演变的思考作铺垫。
5.细读课文,体会作者观察与感受,说说你从中得到的启示。
五、语言品析
选择自己喜爱的语段,反复阅读,体会情感。
例:地晨新翻的玫瑰红的土块,有如一堆堆绿色的珠子,又如野草一般妖艳。
这两个比喻很有创意。把新翻的土块,比作一堆堆垢子和野果,看了之后令人产生喜爱之情,也表现了这里一片充满生机制土地,更妙的是“妖艳”这个词经人以无限的遐想。
六、小结
作者由一颗晚熟的草莓触动了情思,引发了丰富的联想,他告诉我们季节的更替、生命的演变是不可抗拒的自然规律,我们要很好地把握现在,去创造美好的未来。
七、作业
完成课后练习
教学建议
一、知识结构
二、重点、难点分析
的定义既是本节教学的重点,也是难点.本节知识建立在射线、线段等相关知识的基础上,同时也是进一步学习的度量、比较、画法,以及深入研究平面几何图形的基础.
1.的定义是由实际生活中具有的形象的物体抽象出来的,理解的定义一定要明确的边为射线,为平面内的点集.也可认为是一条射线绕它的端点从一个位置旋转到另一个位置而形成的图形,这里的线动成体现了运动变化的思想.
2.的表示法,小学没有介绍,这里首先说明用三个字母记.对此,要特别强调表示顶点的字母一定要写在中间,唯有在顶点处只有一个的情况,才可只用顶点一个字母来记这个,否则分不清这个字母究竟表示哪一个.在讲往数字或希腊字母来记时,可再让学生作些练习,说出所记的怎样用三个字母来表示.
三、教法建议
1.本节教学可以在简单复习直线、射线、线段的基础上引入,将问题的研究方向转向这些最基本的几何图形与点结合以及互相结合能够组成什么图形.可以尝试让同学们摆火柴,重点应在具有的形象的图形,然后可以在列举、观察、分析学习、生活、生产中同样具有的形象的物体的基础上,让同学们尝试给出的定义.
2.关于的另一种定义,也可以通过实物演示的方式得出,冽如一手扯住线的一端,另一手拉住线的另一端旋转.重点应是对运动变化的观点的渗透.平和周也可以让学生给出,真正理解“平”与“直”的含义.
3.教学过程中可以给出一些判别给定图形是不是的练习,帮助学生理解的相关概念.同时将的知识与学生的生活实践紧密的结合起来.可以充分发挥多媒体教学的优势,结合图片、动画、课件辅助教学.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解、周、平及的顶点、的边等概念.
2.掌握的表示方法.
(二)能力训练点
1.通过由学生观察实物图形抽象出的定义,培养学生的抽象概括能力.通过学生独立阅读总结的几种表示方法,培养学生的阅读理解能力.
2.通过的两个定义的得出,培养学生多度分析考虑问题的能力.
(三)德育渗透点
1.通过日常生活中具体的的形象概括出的定义,说明几何来源于生活,又反过来为生产、生活服务.鼓励学生努力学好文化知识,为社会做贡献.
2.通过旋转观点定义,说明事物是不断变化和相互转化的,我们不能用一成不变的观点去看待某些事物.
(四)美育渗透点
通过学习使学生体会几何图形的对称美和动态美,培养学生的审美意识,提高学生对几何的学习兴趣.
二、学法引导
1.教师教法:引导发现,尝试指导与阅读理解相结合.
2.学生学法:主动发现,自我理解与阅读法相结合.
三、重点·难点·疑点及解决办法
(一)重点
的概念及的表示方法.
(二)难点
周、平概念的理解.
(三)疑点
平与直线、周与射线的区别.
(四)解决办法
通过演示法使学生正确理解平、周的概念,适当加以解释,简明扼要,条理清楚即可,不必做过多的解释.
四、课时安排
1课时
五、教具学具准备
投影仪(电脑、实物投影)、三板、圆规、自制胶片.
六、师生互动活动设计
1.教师创设情境,学生进入.
2.教师步步设问,提出问题,学生在回答问题、自己画图、观察图形的过程中掌握的静态定义.
3.教师指导,学生阅读、归纳四种表示的方法.
4.教师用电脑直观演示展示的旋转定义.
5.反馈练习.
6.师生讨论总结.
7.测试.
七、教学步骤
(一)明确目标
使学生能正确认识的两种定义及相关概念,掌握的表示方法,正确理解平、周的概念,并能从图形上进行识别.
(二)整体感知
以现代化教学为手段,调动学生主动参与的积极性,使学生在动手过程中自觉地掌握知识点.
(三)教学过程
创设情境,引出课题
师:前几节我们具体研究了小学时初步认识的直线、射线、线段.另外,小学时我们还认识了另一种几何图形——.你能说出几个日常生活中给我们的形象的物体吗?(学生会很快说出周围的课桌、门窗、墙壁的;圆规张开两脚;钟表的时针与分针间形成的等等.)
【教法说明】为了更形象、更直观用实物投影显示一些实物图形.
让学生说出口常生活中给我们的形象的物体,充分发挥学生的想像力,培养其观察事物的习惯,同时,活跃课堂气氛,调动学生学习积极性.也培养了学生从具体实物图形中抽象出几何图形的能力.
师:的确如此,在我们日常生活中,的形象可以说无处不在.因此,一些图案的设计;机械零件的制图等等,常常用到的画法、的度量、的大小比较等知识.从这节课开始我们就具体地研究.希望同学们认真学习,掌握真本领,将来为社会做贡献.
探究新知
1.的静止观点定义的得出
提出问题:通过以上举例和小学时你对的认识,你能画出几个不同形状的吗?
学生活动:在练习本上,画出几个不同形状的,找一个学生到黑板上画图.可能出现下列情况:
师:根据小学所学你能指出所画的边和顶点吗?(学生结合自己理解和小学所学,会很快指出的边和顶点.)
师:同学们请观察,的两边是前面我们学过的什么图形?它们的位置关系如何?你能否根据自己的理解和刚才老师的提问,描述一下怎样的几何图形叫做吗?
学生活动:学生讨论,然后找代表回答.
教师在学生回答的基础上,给予纠正和补充,最后给出的正确定义.
[板书]:有公共端点的两条射线组成的图形叫做,这个公共端点叫的顶点,这两条射线叫的两边.
(出示投影1)
指出以上图形,的顶点和的边.
提出问题:的大小与两边的长短有关系吗?
学生讨论并演示:拿大小不同的两副三板或学生的三板与教师的三板对比演示.让学生尽可能地发表自己的看法和观点.不要拘泥于课堂上的形式,充分调动学生回答问题的积极性.
教师对学生的回答给予肯定或否定后小结:的两边既然是射线,则可以向一方无限延长,所以的大小与所画的两边长短无关,仅与的两边张开的程度有关.
【教法说明】的定义的得出,不是教师以枯燥的形式强加给学生,而是让学生自己在画图、观察图形的过程中,由教师引导提出问题,步步追问,自觉地去认识.在问题解决的过程中,在复习旧知识中,不知不觉学到了新知识——.这样缩短了新旧知识间的距离,减轻了学生心理上的压力,使他们感到新知识并不难,在轻松愉快中学到了知识.同时也会感受到新旧知识之间的联系.对发展学生用普遍联系的观点看待事物有很好的作用.
2.的表示方法
师:研究,像直线、射线、线段一样,可以用字母表示.下面我们阅读课本第25负第三自然段,总结的表示方法有几种,你能否准确地表示一个并读出来.
学生活动:学生看书,可以相互讨论,然后归纳出的几种表示方法.
【教法说明】的四种表示方法,课本中用一自然段说明,语言通俗,很易理解,学生完全可以通过阅读,分出四个层次,四种表示的方法.因此教师要大胆放手,培养学生阅读理解能力,归纳总结能力.
学生阅读后,多找几个学生回答.最后通过不断补充、完善,归纳整理得出的四种表示方法,教师整理板书.
[板书]
图1图2图3
【教法说明】总结以上四种表示方法时,对前两种表示方法,应注意的问题要加以强调.第一种表示方法必须注意:顶点字母在中间.第二种表示方法只限于顶点只有一个.这是以后学生书写过程中最易出错的地方.另外,让学生区分的符号与小于号.这些应注意的问题最好由学生讨论,学生发现后归纳总结.
反馈练习:投影打出以下题目
指出图中有几个,并用适当的方法表示它们.
3.用旋转的观点定义
师:同学们看老师从另一个度提出新问题.前面我们给下过定义,是在静止的情况下,观察是由怎样的两条射线组成.下面,我们从运动的观点观察一下的形成.
图1
演示:教师由电脑显示一条射线,然后射线绕其端点旋转,到另一个位置停止则形成一个,如图1所示.举例帮助学生理解:钟摆看成一条射线,从一个位置摆到另一个位置则形成一个.
学生讨论并试述定义:学生叙述不会太严密,教师纠正、补充后板书.
【板书】:还可以看成是一条射线从一个位置旋转到另一个位置所形成的图形.
说明:射线旋转时,经过的部分是的内部.让学生说明平面内除了的内部外还有几部分,分别是什么?(的边与的外部)
【教法说明】的旋转观点的定义是教学中的一个难点,学生不易理解.因此,结合电脑的显示,举出实例等手段加强教学的直观性.
4.平、周的概念
师:可以看成是一射线绕其端点旋转所形成的图形.那么,旋转时有无特殊情况呢?
由电脑演示并说明:
射线绕点旋转,终止位置和起始位置成一条直线时,所成的叫平,如图2所示.同样可表示为,顶点,两边为射线和射线.继续旋转,回到起始位置时,所成的叫做周,如图3所示.周的顶点为,两边重合成一条射线.
图1图2
师说明:(1)平与直线、周与射线是两个不同的概念,它们的图形表面上看一样,但本质上不同.如:直线上取点表示点在直线上的位置,而平是由顶点和边组成的这一几何图形.
(2)在这一书中,所说的,除非特殊注明,都是指没有旋转到成为平的.
【教法说明】平、周概念学生不容易理解,所以要通过直观演示后教师加以解释,但也不要解释得过多.否则,学生会更糊涂,简明扼要,条理清楚即可.
反馈练习:投影显示
1.指出图中以为顶点的平的两边
2.指出图中(包含平在内)的有几个,并分别读出它们
对以上练习发现问题及时纠正.
变式练习,培养能力
投影出示:
1.如图1:可以记作吗?为什么?
图1
2.如图2:、分别是、上的点
①与是同一个吗?
②与是同一个吗?
3.如图3:是什么?顶点、边分别是什么?
图2图3
【教法说明】为活跃课堂气氛,以上练习可以抢答.
(四)总结、扩展
学生看书,回答本节学了哪些主要内容,同桌可以相互讨论.最后教师按学生的回答归纳出本节知识脉络.投影显示:
八、布置作业
预习下节内容.
九、板书设计
同七、(四)中的格式,在表示方法中加上图形.
本文网址://m.jk251.com/jiaoan/9256.html
下一篇:电场线