导航栏

×
范文大全 > 初中教案

正弦余弦初中教案精选

时间:2022-02-13 正弦和余弦

教学建议

1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

2.重点、难点分析

(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

很显然,这些表达式提供给我们丰富的边与角间的数量关系.

5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.

利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.

根据定义,有

另一方面,可以想像,当时,边与AC重合(即),所以

当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有

把以上结果可以集中列出下面的表:

0

1

1

0

6.教法建议:

(1)联系实际,提出问题

通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

(2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

(3)加强数形结合思想的教学

“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

第一课时

一、教学目标

1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

二、学法引导

1.教学方法:引导发现和探索研究相结合,尝试成功教法。

2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

三、重点、难点、疑点及解决办法

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

四、教具准备

自制投影片,一副三角板

五、教学步骤

(一)明确目标

1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?

2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?

4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?

前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

通过四个例子引出课题。

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?【m.gX86.cOm 笔稿范文网】

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。

(三)教学过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。

而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。

3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。

(四)总结、扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。

六、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。

七、板书设计

第二课时

一、教学目标

1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

2.逐步培养学生观察、比较、分析、概括的思维能力.

3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

二、学法引导

1.教学方法:指导发现探索法.

2.学生学法:自主、合作、探究式学习.

三、重点、难点、疑点及解决方法

1.教学重点:使学生了解正弦、余弦概念.

2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.

3.疑点:锐角的正弦、余弦值的范围.

4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.

四、教具准备

三角板一副

五、教学步骤

(一)明确目标

1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”

2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—.

(二)整体感知

当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.

而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

(三)教学过程

正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.

.

若把的对边记作,邻边记作,斜边记作,则,.

引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.

【例1】求出如下图所示的中的、和、的值.

解:(1)∵斜边,

∴,.

,.

(2),.

∴,.

学生练习教材P6~7中1、2、3题.

让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

,,.

,,.

【例2】求下列各式的值:

(1);(2).

解:(1).

(2).

这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1);(2);

(3);(4).

(5)若,则锐角.

(6)若,则锐角.

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即

,(为锐角).

还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.

六、布置作业

教材P10中2,3.

预习下一课内容.

补充:(1)若,则锐角.

(2)若,则锐角.

七、板书设计

JK251.com延伸阅读

正弦余弦教案模板


教学建议

1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

2.重点、难点分析

(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

很显然,这些表达式提供给我们丰富的边与角间的数量关系.

5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.

利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.

根据定义,有

另一方面,可以想像,当时,边与AC重合(即),所以

当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有

把以上结果可以集中列出下面的表:

0

1

1

0

6.教法建议:

(1)联系实际,提出问题

通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

(2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

(3)加强数形结合思想的教学

“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

第一课时

一、教学目标

1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

二、学法引导

1.教学方法:引导发现和探索研究相结合,尝试成功教法。

2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

三、重点、难点、疑点及解决办法

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

四、教具准备

自制投影片,一副三角板

五、教学步骤

(一)明确目标

1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?

2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?

4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?

前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

通过四个例子引出课题。

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。

(三)教学过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。

而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。

3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。

(四)总结、扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。

六、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。

七、板书设计

第二课时

一、教学目标

1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

2.逐步培养学生观察、比较、分析、概括的思维能力.

3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

二、学法引导

1.教学方法:指导发现探索法.

2.学生学法:自主、合作、探究式学习.

三、重点、难点、疑点及解决方法

1.教学重点:使学生了解正弦、余弦概念.

2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.

3.疑点:锐角的正弦、余弦值的范围.

4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.

四、教具准备

三角板一副

五、教学步骤

(一)明确目标

1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”

2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—.

(二)整体感知

当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.

而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

(三)教学过程

正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.

.

若把的对边记作,邻边记作,斜边记作,则,.

引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.

【例1】求出如下图所示的中的、和、的值.

解:(1)∵斜边,

∴,.

,.

(2),.

∴,.

学生练习教材P6~7中1、2、3题.

让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

,,.

,,.

【例2】求下列各式的值:

(1);(2).

解:(1).

(2).

这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1);(2);

(3);(4).

(5)若,则锐角.

(6)若,则锐角.

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即

,(为锐角).

还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.

六、布置作业

教材P10中2,3.

预习下一课内容.

补充:(1)若,则锐角.

(2)若,则锐角.

七、板书设计

正弦余弦的教学方案


教学建议

1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

2.重点、难点分析

(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

很显然,这些表达式提供给我们丰富的边与角间的数量关系.

5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.

利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.

根据定义,有

另一方面,可以想像,当时,边与AC重合(即),所以

当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有

把以上结果可以集中列出下面的表:

0

1

1

0

6.教法建议:

(1)联系实际,提出问题

通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

(2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

(3)加强数形结合思想的教学

“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

第一课时

一、教学目标

1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

二、学法引导

1.教学方法:引导发现和探索研究相结合,尝试成功教法。

2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

三、重点、难点、疑点及解决办法

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

四、教具准备

自制投影片,一副三角板

五、教学步骤

(一)明确目标

1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?

2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?

4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?

前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

通过四个例子引出课题。

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。

(三)教学过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。

而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。

3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。

(四)总结、扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。

六、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。

七、板书设计

第二课时

一、教学目标

1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

2.逐步培养学生观察、比较、分析、概括的思维能力.

3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

二、学法引导

1.教学方法:指导发现探索法.

2.学生学法:自主、合作、探究式学习.

三、重点、难点、疑点及解决方法

1.教学重点:使学生了解正弦、余弦概念.

2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.

3.疑点:锐角的正弦、余弦值的范围.

4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.

四、教具准备

三角板一副

五、教学步骤

(一)明确目标

1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”

2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—.

(二)整体感知

当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.

而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

(三)教学过程

正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.

.

若把的对边记作,邻边记作,斜边记作,则,.

引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.

【例1】求出如下图所示的中的、和、的值.

解:(1)∵斜边,

∴,.

,.

(2),.

∴,.

学生练习教材P6~7中1、2、3题.

让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

,,.

,,.

【例2】求下列各式的值:

(1);(2).

解:(1).

(2).

这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1);(2);

(3);(4).

(5)若,则锐角.

(6)若,则锐角.

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即

,(为锐角).

还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.

六、布置作业

教材P10中2,3.

预习下一课内容.

补充:(1)若,则锐角.

(2)若,则锐角.

七、板书设计

数学教案-正弦余弦相关教学方案


教学建议

1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

2.重点、难点分析

(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

很显然,这些表达式提供给我们丰富的边与角间的数量关系.

5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.

利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.

根据定义,有

另一方面,可以想像,当时,边与AC重合(即),所以

当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有

把以上结果可以集中列出下面的表:

0

1

1

0

6.教法建议:

(1)联系实际,提出问题

通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

(2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

(3)加强数形结合思想的教学

“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

第一课时

一、教学目标

1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

二、学法引导

1.教学方法:引导发现和探索研究相结合,尝试成功教法。

2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

三、重点、难点、疑点及解决办法

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

四、教具准备

自制投影片,一副三角板

五、教学步骤

(一)明确目标

1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?

2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?

4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?

前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

通过四个例子引出课题。

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。

(三)教学过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。

而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。

3.练习:教科书P3练习。此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。

(四)总结、扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。

六、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。

七、板书设计

第二课时

一、教学目标

1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

2.逐步培养学生观察、比较、分析、概括的思维能力.

3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

二、学法引导

1.教学方法:指导发现探索法.

2.学生学法:自主、合作、探究式学习.

三、重点、难点、疑点及解决方法

1.教学重点:使学生了解正弦、余弦概念.

2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.

3.疑点:锐角的正弦、余弦值的范围.

4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.

四、教具准备

三角板一副

五、教学步骤

(一)明确目标

1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”

2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—正弦和余弦.

(二)整体感知

当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.

而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

(三)教学过程

正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作.

.

若把的对边记作,邻边记作,斜边记作,则,.

引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“、”,经过反复强化,使全体学生都达到目标,更加突出重点.

【例1】求出如下图所示的中的、和、的值.

解:(1)∵斜边,

∴,.

,.

(2),.

∴,.

学生练习教材P6~7中1、2、3题.

让每个学生画含30°、45°的直角三角形,分别求、、和、、.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

,,.

,,.

【例2】求下列各式的值:

(1);(2).

解:(1).

(2).

这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1);(2);

(3);(4).

(5)若,则锐角.

(6)若,则锐角.

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即

,(为锐角).

还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.

六、布置作业

教材P10中2,3.

预习下一课内容.

补充:(1)若,则锐角.

(2)若,则锐角.

七、板书设计

初中教案精选


第三节降水和干湿地区

[教学目的]

1.使学生理解我国年降水量的分布特点及其成因,并记住400、800毫米年等降水量线的分布。

2.使学生理解季风活动对降水季节变化、年际变化的影响,并记住季风区与非季风区的范围。

3.使学生知道我国四类干湿地区的分布。

4.使学生学会阅读我国年降水量分布图,分析我国降水量地区分布的特点。

5.使学生学会运用年降水量分配柱状图,分析我国降水量季节分配的特点;学会运用降水量年际变化曲线图,分析、概括我国降水年际变化特点。

[教学重点]

1.我国降水量的地区分布、季节分配和年际变化的特点及其成因

2.我国干湿地区的分布。

[教学难点]

季风活动、锋面雨带与降水的关系

[教具准备]

1.我国年降水量分布图

2.我国干湿地区划分图

[教学课时]

2课时。

[教学过程]

第一课时

(新课引入)

气温和降水是最重要的气候要素。前面二节课我们学习了有关我国气温和温度带方面的知识,下面我们学习有关我国降水和干湿地区的知识。

[板书]第三节降水和干湿地区

(讲授新课)

[提问]让学生看本节课文前面的“想一想”小栏目,提问:七月份正值雨季,这时候出差去吐鲁番是否需要带雨具?九月份我国多数地方秋高气爽,这时期出差去广州是否要带雨具?为什么?(答案:七月份出差去吐鲁番不需要带雨具,因为吐鲁番的全年降水很少,即使在七月份也很少降雨;九月份出差去广州应该带上雨具,因为这时虽然我国大多数地方秋高气爽,但广州雨季还没有结束,经常有阴雨天气。)

[讲述]从上面回答的问题可以看出,了解我国各地降水的时间和空间分布,在生活实际中是有用处的。在生产建设中也要具有这方面的知识。如修建水库或建桥梁时,要考虑当地夏季最大降水量和降水强度。否则,遇有特大暴雨,水库有溢洪、桥梁有坍塌的危险。

[读图]展示《我国年降水量分布图》,读图完成以下练习:

1.找出年降水量超过1600毫米的地区。

(答案:我国东南沿海一带。)

2.800毫米等降水量线通过什么地方?它与一月份的哪条等温线大体上是一致的?

(答案:①大致通过淮河-秦岭一线,西接青藏高原的东南边缘;②0℃等温线。)

3.400毫米等降水量线大致通过哪些地方?

(答案:大致从大兴安岭斜向西南,经过张家口、兰州和拉萨附近,到达喜马拉雅山脉东段。)

4.找出年降水量在200毫米以下的地区。

(答案:西北内陆地区和青藏高原的西部、北部)

5.找出学校所在省、区、市的年降水量大约是多少毫米。(答案:略)

4.比较图上东南沿海地区与西北内陆地区房屋的建筑形式有何不同,这与当地降水情况有什么关系?

(答案:东南沿海的房屋多有屋脊,房顶坡度较大,上面砌有防水的砖瓦,并留有流水沟,易于排水。西北内陆地区房屋多为平顶,上面也没有流水沟。这两种不同形式的房屋建筑,反映了东南沿海地区降水丰沛,而西北内陆地区降水稀少的特点。)

[提问]从以上读图活动可以看出,我国年降水量在地区分布的总趋势是什么?

(可让学生讨论,然后再回答)

[归纳]我国年降水量分布的总趋势是:从东南沿海向西北内陆递减。

[板书]一、降水量从东南向西北递减

[复习]引导学生回忆、复习东南季风和西南季风对东亚、南亚降水的影响。

[提问]为什么我国年降水量的空间分布,具有从东南沿海向西北内陆递减的特点呢?

(让学生充分讨论后,再回答)

[归纳]主要是受东南季风和西南季风的影响。

[板书]1.原因:受东南季风和西南季风的影响

[读图]让学生阅读课本图4·11和图4·12,回答下列问题:

1.东南季风主要影响我国哪些地区?西南季风主要影响我国哪些地区?

(答案:①东南季风主要影响我国东部地区。②西南季风主要影响我国西南、华南地区,长江中下游地区,甚至黄河中下游地区。)

2.从海陆位置和地形影响考虑,为什么西北内陆地区受不到夏季风的影响?

(答案:①深居内陆,距海远。②地形闭塞,有山脉阻挡)

3.季风区与非季风区,大致以哪些山脉为界?

(可辅以《中国地形图》,或使用叠加投影片效果会更好。)

(答案:大兴安岭-阴山-贺兰山-巴颜喀拉山-冈底斯山)

[讲述]习惯上,我们把受夏季风影响显著的地区称为季风区,受夏季风影响不显著的地区称为非季风区。一般来讲,季风区内降水较多,非季风区内降水稀少。季风区和非季风区大致以大兴安岭-阴山-贺兰山-巴颜喀拉山-冈底斯山一线为界。此线西北是非季风区,此线东南是季风区。

[板书]2.季风区与非季风区的分界:

大兴安岭-阴山-贺兰山-巴颜喀拉山-冈底斯山

[读图]让学生阅读课文中的“哈尔滨、北京、武汉、广州降水量年变化柱状图”,回答以下问题:

1.四个城市降水较多的各是哪几个月?

(答案:广州5~9月,武汉5~8月,北京7、8两月,哈尔滨7、8两月。)

2.比较四地降水量的年变化有什么共同点,又有什么明显的差异?

(答案:共同点是降水集中在夏季,7、8两月降水多。不同点是广州、武汉雨季时间长,年降水量比较大;北京和哈尔滨雨季时间短,年降水量比较小。)

[小结]我国各地降水量的季节分配很不均匀,就全国大多数地方来说,降水多集中在夏秋两季,这个时期的降水量约占全年的80%。

各地的雨季长短也不一样。一般来讲,南方雨季开始早、结束晚,雨季长;北方雨季开始晚、结束早,雨季短。

[板书]二、降水集中夏秋两季

1.南方雨季开始早、结束晚,雨季长

北方雨季开始晚、结束早,雨季短

[承转]那么,为什么我国南方和北方的雨季长短不一样呢?

[板书]2.季风活动与锋面雨带

[讲述]在我国东部地区,各地雨季开始和结束的迟早,主要是由季风活动、夏季风的进退所决定的。请同学们看课文中的“锋面雨带示意图”:当夏季风的暖湿气流登陆北上时,与从北方南下的冷空气相遇。暖空气轻,冷空气重,较轻的暖湿气流上升到冷空气之上。暖湿气流在上升过程中,由于气温降低,水汽冷却凝结,成云致雨,形成锋面雨,从而在我国东部地区冷、暖气流交汇的地带出现一条降水较多的锋面雨带。

(教师可边讲述边画出冷、暖气流交汇和锋面雨带形成的示意图。)

[板书]3.雨带推移与各地雨季

[读图填表]阅读我国东部地区雨带推移示意图(图17~20),并结合课文内容,填出下表:

[提问]说出我国东部地区夏季风进退和雨带移动的规律是怎样的。

[归纳]一般年份,从五月中旬开始夏季风便在我国南部沿海登陆,这里最早进入雨季。随着夏季风势力增强北进,锋面雨带随之向北推移。六月中旬到达长江中下游地区,七、八月份到达华北、东北。我国由南向北开始进入雨季。九月,夏季风势力减弱南退,雨带随之迅速南撤,我国由北向南雨季雨带结束。因此,我国各地雨季长短差别很大:南方雨季开始早、结束晚,雨季长;北方雨季开始晚、结束早,雨季短。

[板书]4.长江中下游地区的梅雨和伏旱

[读图]看我国东部地区雨带示意图,说出六月和七、八两月雨带的分布与长江中下游地区的关系。

[讲述]六月,夏季风北进到达长江中下游地区。北上的暖湿气流与冷空气交汇、相持,使锋面雨带在这里徘徊时间长达一个月左右,形成连绵细雨。这时正值梅子黄熟季节,因此人们称之为梅雨。七、八月份,雨带移出长江中下游地区,这里随之出现晴朗天气,降水相对减少,形成伏旱。伏旱时期,炎暑骄阳,蒸发旺盛,又正是水稻生长旺盛、极需要水的时期。因此,伏旱往往给水稻的生长带来威胁。

(布置作业)

选做复习题第1、2题。

第二课时

(复习提问)

我国年降水量在地区分布和季节分配上有什么特点?

(新课引入)

我国年降水量在时间上分布,除了表现在季节上分配之外,还表现在年与年之间的变化上,这就是降水的年际变化。

(讲授新课)

[读图]让学生阅读“北京1951~1980年降水量变化曲线图”,回答下列问题:

1.北京从1951年至1980年的30年间,降水量最多的是哪一年?其降水量约是多少毫米?降水量最少的是哪一年?降水量约是多少毫米?

(答案:1959年最多,降水量达1600多毫米;1965年最少,只有250毫米。)

2.对照年降水量分布图,找出北京的年平均降水量约多少毫米?

(答案:600毫米左右。)

3.结论是什么?

(答案:北京的降水量年际变化大。)

[板书]三、降水量年际变化大

[讲述]总的来看,我国各地的降水量年际变化较大。但相对而言,南方较小,北方较大,西北内陆干旱区更大。

我国各地降水量年际变化大的原因,主要是有的年份季风活动不规律,夏季风进退反常。例如:在夏季风强,向北推进快的年份,北方降水较正常年份就偏多,南方降水则偏少;而夏季风弱,向北挺进慢的年份,北方降水较正常年份就偏少,南方降水则偏多。从而使得我国各地各年的降水量差别很大。如果某些地方在某一年的降水量过多或过少,就会出现水灾或旱灾。

[提问]近几年来,我们这里每年降水量的多少都一样吗?降水量年际变化如何?请举例说明。(学生议论,教师再用当地的降水资料加以说明。)

[板书]四、干湿地区

[提问]请同学们回忆上一节课所学的内容,回答:

1.我国年降水量分布的规律是怎样的?

2.800毫米、400毫米、200毫米等降水量线大致分布在哪一线?

[讲述]由于我国年降水量的地区分布不均,因此各地的水分条件差异很大。有的地方湿润,有的地方干旱。一个地方的干湿状况,是由这个地方的降水量和蒸发量的关系所决定的。当降水量大于蒸发量,气候就湿润;反之,气候则干旱。

根据降水量和蒸发量的关系,我国可分为湿润地区、半湿润地区、半干旱地区、干旱地区。

[板书]1.四类干湿地区:湿润地区、半湿润地区、

半干旱地区、干旱地区

[读图]阅读我国干湿地区划分图,并对照我国年降水量分布图,回答以下问题:

1.湿润地区和半湿润地区的分界线,大致接近哪一条等降水量线?(800毫米等降水量线)

2.半干旱地区和半湿润地区的分界线,大致接近哪一条等降水量线?(400毫米等降水量线)

3.半干旱地区和干旱地区的分界线,大致接近哪一条等降水量线?(200毫米等降水量线)

[归纳]通过读图我们可以看出,400毫米等降水量线大致可将我国分成东西两部分。东部为湿润、半湿润地区,西部是半干旱、干旱地区。东部地区又大致以800毫米等降水量线为界,南方为湿润地区,北方为半湿润地区。西部则以200毫米等降水量线为界,大致可分为干旱地区和半干旱地区。

[板书]2.干湿地区的分布

[读图填表]看我国干湿地区划分图,并对照中国地形图和政区图,填写下表:

[讲述]不同的干湿地区,反映了不同的水分条件,对我国的农业生产影响十分明显。东部湿润、半湿润地区(大致相当于东部季风区),是我国主要的耕作农业区。湿润地区以水田耕作农业为主,半湿润地区以旱地耕作农业为主。西部干旱、半干旱地区,则是我国主要的草原牧业地区。

(复习巩固)

1.课文“想一想”:从我国降水的时空分布考虑,为什么我国无论是西部还是东部,北方还是南方,发展农业生产都不能单纯依靠天然降水,必须因地制宜地采取各种水利措施呢?(答案:我国降水的时空分布不均。西部地区降水稀少,发展农业生产必须依靠水利灌溉。东部地区,即使是南方湿润地区,由于降水的季节分配不均,年际变化大,在少雨季节和降水偏少的年份,天然降水不能满足农业生产的需要,也同样要依靠水利措施,才能保证农作物的稳产、高产。)

2.课文“做一做”练习:①秦岭-淮河一线,是一月份______℃等温线通过的地方,______毫米等降水量线通过的地方,又是温度带中的______带与______带的分界线,干湿地区中的______地区与_____地区的分界线。

(答案:0℃;800毫米;亚热带;暖温带;湿润地区;半湿润地区。)

②用直线将下列地区与其所处的温度带和干湿地区连接起来:

寒温带黑龙江省最北部干旱地区

中温带华北平原

暖温带珠江三角洲半干旱地区

亚热带塔里木盆地

热带内蒙古高原半湿润地区

高原气候区青藏高原西北部

海南省湿润地区

(布置作业)

选做复习题第3、4题。

[板书设计]

第三节降水和干湿地区

一、降水量从东南向西北递减

1.原因:受东南季风和西南季风的影响

2.季风区与非季风区的分界:大兴安岭-阴山-贺兰山-巴颜喀拉山-冈底斯山

二、降水集中夏秋两季

1.南方雨季开始早、结束晚,雨季长

北方雨季开始晚、结束早,雨季短

2.季风活动与锋面雨带

3.雨带推移与各地雨季

4.长江中下游地区的梅雨与伏旱

三、降水量年际变化大

四、干湿地区

1.四类干湿地区:湿润地区半湿润地区

半干旱地区干旱地区

2.干湿地区的分布

综合教案初中教案精选


课型:综合课

教学方法:讲解、行赏、比较、练习相结合

1、教学目的

1、通过本课学习,2、使学生初步了解视觉形象的分类和造型要素的基本知识。

3、通过对美术作品中形的认识和分析,4、提高学生对艺术形的欣赏能力。

5、通过对本课的学习,6、使学生认识美术具有多种表现形式,7、从而8、提高学生对艺术形式美的欣赏能力,9、以及美术学习的兴趣与信心。

2、教学重点、难点:

重点:掌握写实造型、变形造型和抽象造型的区别,并能运用所学知识识别美术作品的不同表现形式。

难点:掌握基本要素的特点,并能运用基本要素分析作品。

3、教具、学具准备4、

教具;自制造型要素挂图一张,不同表现形式的作品若干幅。

学生:课本、作业本、软心铅笔、尺。

5、教学步骤

第一课时

一、导入新课:(约2分钟)

大千世界的各种物象形体,首先是被我们的眼睛感受到的,对视觉形象进行观察和研究,会使我们获得丰富的审美信息和多种知识,提高我们的审美能力、表现能力和创造能力。

板书:视觉形象的分类(约23分钟)

尽管视觉形象复杂多变、丰富纷呈,但总体上可分为两大类,即自然形和人工形。由自然力造成的,叫自然形(如山石、河岸、动植物等),人类出于某种目的造成的形,叫人工形(如产品、工具等)人工形中以表达思想观念和审美感受为目的的,叫艺术形(如绘画、雕塑、工艺美术等)。

板书:自然形

人工形

艺术形:表达思想观念、富于审美价值。

提问:分别举出生活中的自然形、人工形和艺术形的物象。

形还可以从不同方面进行分类,如材料上分,有纸材料造型、木材料造型、金属材料造型、石质材料造型等。

(以问答形式讨论欣赏作品,再作总结)

《饮水的熊》作者在创作中,用造型的基本法则之一即对称手法,巧妙地表现了饮水的熊和它的倒影,且将石质材料打磨光洁,以表现小熊的可爱和水的清盈感。

《怀抱》以金属材料制作的富有动感的造型表现了母子欢快的神情。《母子》则用概括的手法打磨光洁的木质,表现丰润的母子形象,摇篮式的造型,激起了人们对童年的美好回忆。

板书:造型要素:(约18分钟)

造型要素主要有点、线、面、体块与空间、光与色、质地等。在艺术造型中,如能很好地利用这些要素,将使作品更具魅力。因此,我们必须认识了解造型要素及其功能。

(结合造型要素范图讲解)

点:最小的视觉单位。包括各种不同形状的点,能成为注意中心确定结构以及组成体面(参看课本P4生活中的点和表现点的节秦的绘画)。图①中,我们看到运用点的组织,产生疏密有致的变化,富有节奏感。

线:可看作点运动的痕迹,有方向和运动感,可以表达情感,限定形状,表现质地和描绘阴影(讲解挂图)

面:由长度和宽度构成的平面形,面的形成有三种方式:线的包围、分割和表面色、质的变化。面可以分为几何形和自由形两大类(讲解挂图)。

体块与空间:体块即长度、深度三维空间的占有形式,或者说是由长度、宽度和深度构成的主体形。(参看P4生活中的体块)。空间指物体间的远近层次关系和包容关系。(如雕塑)具有实在的体积和空间,而绘画艺术,则是在平面上创造体块与空间的幻觉。如《长城》一画,就是在平面上通过平俯视构图,运用了大-小的透视缩形规律,以及近实远虚的视觉规律,加上光与色的烘托渲染,画面气势磅礴,使我们增强了民族的自豪感和加深了对祖国的热爱之情。

光与色:有光才有色,视觉世界是由光显示出来的。(参见P4大自然中的光与色)。色彩的正确表现能使画面获得真实感。不同倾向的色彩还能给予我们不同的视觉和心理感受,引起情绪的变化,如红色能给人以温暖、刺激的感受,蓝色则可能给人以冷、宁静的感受。

质地:指物体表面的解觉性或这种质地的视觉表现。(参看P4《雕塑》的质地)《雕塑》用粗扩的石质表现男性皮肤的质感。

6、总结和布置下一课时内容(约2分钟)

我们认识造型的基本要素,是为了更好地表现千变万化,千姿百态的视觉形象,认识艺术家取自自然之法则,创造出的瑰丽艺术世界。我们下节课将进入艺术家创造的艺术世界。

第二课时

1、复习旧知,

2、导入新课

美术造型的基本要素来之于生活,但不是对生活的复制。“艺术源于生活。但不等不生活。”在从事美术创作时,艺术家会根据特定表现目的的需要,选择适合自己个性、兴趣的美术表现形式。

3、表现形式的分类

就表现形式的明显特点而言,分成具象造型和抽象造型两种基本形式。具象造型与抽象造型的区别在于:前者具有客观的现实形象,而后者中我们则不能看出任何客观的现实形象(结合教材范图讲解)。

具象造型又可分为写实造型和变形造型。写实造型指忠实客观地描绘事物的真实面目的造型,或者说,在这种造型中,客观物象基本上按我们日常所见的样子被反映出来(见《苹果树》之二、《小提琴手》)。变形造型则是运用夸张、省略等方法,表现人对事物的主观认识和情感。尽管变形造型反映的对象与我们日常所见不同,但我们仍可认出它们。变形造型即处于“似与不似之间”的艺术形式,层次十分丰富,既可偏于写实造型,又可偏于抽象造型(见《苹果树》之三、《人物》)。

抽象造型在古代艺术中就已出现,而现代抽象则主要通过抽象的线、形、色的不同组合表达人的主观情感(见《即兴》、《岩石间的小镇》)

第三课中国古代美术作品欣赏(1课时)

课型:单一课

教学方法:讲述、欣赏与思考

一、教学目的

1、通过对作品的介绍与欣赏,使学生初步了解宋代绘画艺术的空前盛况及作品的伟大成就。

2、对学生进行爱国主义教育,培养学生的民族自豪感和对中国传统绘画艺术的鉴赏能力。

二、教学重点

作品的艺术成就。

三、教学步骤

(一)引言与组织教学

中华民族能自立于世界民族之林,是因为她有着悠久的文明史。有着自己璀璨的民族文化。中国画----则是世界绘画艺术中的一颗绚丽的明珠。中国古代绘画艺术,多以中国画见长。下面请欣赏中国古代绘画史上全盛时期的作品,中国古代最大的风俗画---《清明上河图》。(板书课题,挂出画卷,约3分钟)

(二)作者简介

作者,张择端,字正道,东武(今山东诸城)人。生卒时间不详。约生活在十二世纪,为北宋未年著名的风俗画家。早期游学于京师。后习绘画,专攻界画,擅长舟船、车马、人物、街市、城郭等。宋徽宋熏和、宣和年间供职于翰林图画院侍诏(画院最高职称)。传世作品有《清明上河画》、《西湖争标画》、《武夷图卷》等。

三)《清明上河图》创作的历史背景

公元十世纪后期(960年),赵匡胤统一中国,建立了北宋皇朝,结束了五代十国的分裂局面。政治上实行了中央集权,经济上发展了农业、手工业和商业贸易。农业上注重了精耕细作、使用良种;陶瓷、纺织等手工业产品闻名于世,畅销国外;火药、指南针、活字印刷术三大发明等科学技术使对外贸易和城市经济空前繁荣,城市集镇不断出现,并产生了世界上最早的纸币,有了专营经商的(商店)、(剧场)、娱乐场”等。当时的京城汴梁(今开封市)则更显繁华。但北宋后期各代皇帝为求苟安(亦称偏安),向辽国接受屈辱的澶渊之盟。给西夏纳“岁币”。向金割地、纳银、贡绢,宋徽宗时期则更甚,虽联金灭了辽国,次年金兵大肆攻宋,徽宗为求苟安,主张议和投降,罢免了主战派将领。终在1127年,徽宗成了金兵的俘虏,北宋王朝被灭亡。张择端生活在北宋末期。皇帝宋徽宗赵佶虽昏庸腐朽,却是一个出色的画家。在位期间是宋代画院的极盛时期。招录了不少有才华的画师入画院供职。宋徽宗很注重写生,他诏令翰林画院的画师都要写生。张择端根据京城汴梁繁华的集市贸易与街景(一是说清明时节,但清明时节的景象描写不多,另一说法是从清明坊到虹桥一汴河上河的街景。后者则更有说服力。人物中有赤膊的、戴斗笠的、轿上插树技遮荫的、摊位上的遮阳伞、遮荫篷等可以作证)写生而创作了蜚声世界的《清明上河图》。

(四)欣赏《清明上河图》

1、主题思想:通过对北宋都城汴梁繁荣的经济生活与民俗风物的描绘,歌颂了创造历史和社会财富的下层劳动人民的智慧和力量。

2、作品介绍:

《清明上河图》全长5278厘米,高248厘米,绢本白描淡色长卷风俗画,现藏故宫博物院。

全画气势磅礴,规模宏大,场面复杂,结构严谨,为全景式构图。总体上看,可分为田野、汴河、街市三个地方。情节连绵不断,高潮迭起。图中街市,屋宇栉比,货摊沿街,人物众多,神态各异,人喧马嚣,车轿穿梭。正是这番形形色色,熙熙攘攘,百货俱陈,百态俱备的情景,呈现了北宋末期工商业发达的社会面貌。从商业、交通、澶运建筑等几个具典型意义的角度,集中概括地再现了十二世纪我国都市生活状况。反映了一个历史时期的政治、经济、文化及民俗。构成了一件内容丰富的完整的艺术品,成为研究北宋社会的综合性形象史料。

画卷共画不同阶层的人物550佘人(教材上虹桥部分就有130佘人),不同种类和形态的牲畜五、六十匹,不同类型的车轿二十佘辆(顶),房屋三十佘幢,大小船只三十佘艘。无论状物写人,还是写动描静,对每个细节都求一丝不苟于浩大工程之中。画家具有非的观察力、记忆力和写生功底。用默写的手法,把游汴河两岸街景时遇到的典型事件描绘出来。如全画的中心---虹桥部分,表现出桥上喧哗、桥下沸腾的热烈场面。桥头货摊相连,左侧桥栏边的人物在观景赏流,桥右侧人物扶栏观船逆流过桥。桥中达官贵人的轿马相遇,双方的豪奴都在呼喝让道,可见骑者勒马,;轿夫阻步。表现出统治阶级的骄横。并使桥上出现拥挤阻塞现象。桥下水流湍急。一大船头已过桥面,船身尚在桥下,船橹末端尚露出在桥右侧一方。另一货船正要过桥,船身已横,船头已被激流冲下。船夫们手忙脚乱,有的奋力撑船,有的挥手呼号,不进则退,船身已横,船夫们手手忙脚乱。这种人声鼎沸、激浪奔腾的热烈场面,在画家笔下表现得淋漓尽致。

作为全景式构图的古代现实主义艺术大作,从远郊河野,一直至城郭街市,不但能鸟瞰繁华的街市,还可极目郊野;楼宇舟桥树木横列于近处,河道原野延伸至天边。景物的大、小、远、近、疏、密、动、静、简、繁,通过画家传神之笔,都得到准确、慎密、生动、妥贴的有机表现。使画卷具有长而不冗、繁而不乱、紧凑严密、起伏有节的鲜明的艺术节奏感。充满“方寸之内,体百里之回“的宏伟气慨。表现了画家在运思立意过程中,概括生活和选取题材方面的高度艺术才华。以及在布局上不受固定视点的限制,充分运用“散点透视”的娴熟技巧。

(五)《清明上河图》的艺术成就。

1,作品体现了我国民族绘画的优秀传统和中国古代画家“目识心记”深厚的默写功能。

2,线描技法已臻和谐完美的高水平。突出地体现了我国古代绘画以线造型的技法特色。

3,是人物刻划、景物描绘达到形神毕肖、生动准确的神品之作。

4,是中国画传统的“散点透视”的布局的典型。

5,是界画、山水、人物融为一体的以工带写,以写润工的典范。

6,是显示画家高度的组织技巧和概括现实生活能力的范例。

7,是研究宋代社会的综合形象史料。

(六)结论

《清明上河图》是闻名世界的绢本白描淡色长卷风俗画。是我国古代写实主义的杰作(早欧洲七百余年),是中华民族文化艺术的珍宝,是中国美术史上一颗灿烂的明珠。

前言初中教案精选


前言与同学们谈地理教学目标1、根据学生实际情况,从生活入手,激发学生好奇心和求知欲,让学生们感知地理与生活的密切关系。2、使学生初步具备地理的思考观念,学会用地理的方法“想”问题。课时安排:1课时教学过程导入:我们形容一个人博学,通常都用“上知天文,下晓地理”。其实,天文和地理都属于现在地理学的范畴。大家知道什么是地理吗?地理又与我们的生活有什么关系吗?这些相信都是同学们急于想知道的问题。那么我们就从先从这里入手。板书:一、生活离不开地理提出问题:Ⅰ将学生分组,让每组学生都联想一下我们生活中什么事物和现象与“地理”有关,并说出来?Ⅱ教师根据学生说的内容,并选择一部分对应做出简单的解释。教师总结:从同学们的回答中可以看出地理与我们的衣食住行等方面息息相关,总而言之,生活离不开地理学生看书p2图片:Ⅰ从图上看到什么?提示:为什么世界上不同地方的人们的生活有这么大的差异?Ⅱ让学生分组,一组根据图提出问题,一组回答问题。Ⅲ教师对各组的回答进行总结并说明这四幅图存在差异的原因,进行详解,逐步让学生了解生活和生产与地理的关系,理解“一方水土养一方人”的观念。教师讲述:通过以上学习,我们知道人总是会生活在一定的地方,不过不同地方的环境有不同的特点,地理环境和人类活动有着必然的关系。人类正是通过逐步的积累这些关系,从而形成地理学。它研究的内容包括天文知识、地表的形态、天气、气候、人口分布等等方面,应用的范围也十分广泛。我们的生活是离不开地理的,处处都有地理。好像一些谚语:“朝霞不出门,晚霞行千里”便能够充分说明我们生产和生活都要遵循一些客观规律,这些规律就是地理与人类生活的关系,也是地理学研究的核心内容。我们学地理,就是要学会这些规律,让它们指导我们的生活,使我们更好的生活。板书:二、学习地理,为了更好的生活提问:在大自然中存在着许多现象和奥秘是我们目前不了解甚至是不知道的,同学们能列举一些吗?学生回答教师讲述:这些现象形成的原因是什么?也是以后我们要逐步要研究的问题,甚至有一些问题就连老师现在也搞不懂。而我们学习地理更重要的是在我们形成一个地理的观念,学好地理需要有一个“地理的头脑”,面对我们身边的问题,都会用地理的方法去“想”问题。看p3巴比伦介绍讨论:提问:说一下这段文章的认识,试说明了什么问题?让学生分组讨论学生回答教师总结概括,说明尊重自然规律、爱护大自然就是爱护我们自己,否则要受到惩罚,自毁家园。板书:1、尊重自然规律,做大自然的朋友看p3“姑姑的故事”讨论:提问:说一下这段文章的认识,试说明了什么问题?让学生分组讨论教师总结:由于人类的生存环境的差异,只有扬长避短,才能发展,同时也说明尊重大自然规律给我们的好处,这与破坏大自然形成了鲜明的对比。板书:2、因地制宜,扬长避短看p4“城市的形成要受到哪些因素的影响?”讨论:让学生谈谈想法学生回答教师总结在分析地理问题时,要用综合眼光,综合地分析问题。板书:3、综合地分析问题看p4标出地话:提问:说一下对这句话的认识,说明了什么问题?让学生分组讨论学生回答教师总结概括,社会地发展一方面给人们带来物质财富,同时由于人口过多、资源浪费等许多原因破坏了大自然,形成了目前严峻的环境问题,因而要更好地生活下去,必须建立可以持续发展的观念,建立新地生活、生产方式板书:4、具备可持续发展地观念总结:通过这一节课的学习,大家初步对地理有了一个简单地认识。地理是一门有趣的科学,也是一门有用的科学。我们知道要学习地理就是为了更好的利用地理,学会用地理的方法“想”问题,利用地理的知识指导我们的生产和生活,遵从客观的规律,使我们能够更好的生活。

梯形初中教案精选


一、教学目标

1.掌握等腰梯形的判定方法.

2.能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.

3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想

二、教法设计

小组讨论,引导发现、练习巩固

三、重点、难点

1.教学重点:等腰梯形判定.

2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).

四、课时安排

1课时

五、教具学具准备

多媒体,小黑板,常用画图工具

六、师生互动活动设计

教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的判定,归纳小结梯形转化的常见的辅助线

七、教学步骤

【复习提问】

1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?

2.等腰梯形有哪些性质?它的性质定理是怎样证明的?

3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?

我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.

【引人新课】

等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.

前面我们用等腰三角形的定理证明了等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理.

例1已知:如图,在梯形中,,,求证:.

分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.

(引导学生口述证明方法,然后利用投影仪出示三种证明方法)

(1)如图,过点作、,交于,得,所以得.

又由得,因此可得.

(2)作高、,通过证推出.

(3)分别延长、交于点,则与都是等腰三角形,所以可得.

(证明过程略).

例3求证:对角线相等的梯形是等腰梯形.

已知:如图,在梯形中,,.

求证:.

分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.

在和中,已有两边对应相等,别人要能证,就可通过证得到.

(引导学生说出证明思路,教师板书证明过程)

证明:过点作,交延长线于,得,

∴.

∵,∴

∵,∴

又∵、,∴

∴.

说明:如果、交于点,那么由可得,,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.

例4画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积.

分析:如图,先算出长,可画等腰三角形,然后完成的画图.

画法:①画,使.

.

②延长到使.

③分别过、作,,、交于点.

四边形就是所求的等腰梯形.

解:梯形周长.

答:梯形周长为26cm,面积为.

【总结、扩展】

小结:(由学生总结)

(l)等腰梯形的判定方法:①先判定它是梯形②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.

(2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)

八、布置作业

l.已知:如图,梯形中,,、分别为、中点,且,求证:梯形为等腰梯形.

九、板书设计

十、随堂练习

教材P177中l;P179中B组2

本文网址://m.jk251.com/jiaoan/10523.html

相关文章
最新更新

热门标签