梯形面积课件精品十二篇。
发现一篇网络上的好文“梯形面积课件”非常值得一看,希望这篇文章能够让你有所收获建议你将其收藏起来。老师会根据课本中的主要教学内容整理成教案课件,因此老师最好能认真写好每个教案课件。教案是教学方法的具体体现。
梯形面积课件 篇1
教学目标:
1.通过学生操作拼图,使学生在理解的基础上,总结概括并掌握梯形面积的计算公式,学会用字母表示公式,并能正确计算梯形的面积。
2.通过多媒体的直观演示,让学生在观察比较、动手操作的基础上,发展学生的空间观念,进一步学习用转化的方法思考问题。
3.培养学生的分析、综合、抽象、概括以及解决实际问题的能力,培养学生创新意识。
教学重点:
掌握梯形面积的计算公式,并能够运用公式正确计算梯形的面积。
教学难点:
梯形面积计算公式的推导。
教学用具:
计算机课件、实物投影、两个完全一样的一般梯形(若干)、直角梯形、等腰梯形,并标有梯形的各部分名称
学具:同上、一把剪刀
教学过程:
一、复习铺垫
1.同学们,谁还记得我们认识了哪些平面图形?
2.在这些图形中,已经学过哪些图形的面积?谁给大家说一说?
3.过渡语:学习平行四边形和三角形的面积时,我们是把新的图形转化成学过的图形,推导出面积的计算公式。今天这节课,我们继续用这种方法来研究梯形的面积。
4.板书课题:梯形面积的计算
二、合作探究,推导公式
1.老师给大家几个思考讨论题,请一个同学读一读。出示思考题:
(1)请你拼一拼、摆一摆、折一折、剪一剪,把梯形转化成学过的图形。
(2)梯形的面积与转化后图形的面积有什么关系?
(3)转化后图形的各部分相当于梯形的哪些部分?
(4)试着推导出梯形的面积公式。
2.现在同学们小组合作,看看谁能够通过自己的努力,发现梯形面积的计算公式,并按照思考题的顺序进行讨论。
3.学生拼摆讨论,教师巡视点拨。
4.汇报拼摆过程。学生前边演示,叙述推导。
梯形面积课件 篇2
教学目标:
1、通过学习,学生理解、掌握梯形面积的计算公式,并会运用。
2、学生在梯形面积计算公式的推导过程中,发展空间观念,领悟转化思想,感受事物之间是密切联系的。
3、学生在探究中思考,在思考中发展,在发展中快乐,体验到数学是有趣的、有用的、是美的,激起学习数学的兴趣和自觉性。
教学重难点:
理解并掌握梯形面积的计算公式,并能运用公式解决简单的实际问题。
让学生利用已有知识和学习方法自主探究,发现并掌握梯形的面积计算方法。
教学片断实录:
生:这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。
师:但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?
师:同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。
在动手操作之前,老师提出三点建议:
(1)想想能把梯形转化成学过的什么图形。
(2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。
(3)填写好汇报单,比一比,哪个小组的动作快。
明白了吗?开始吧!
师:刚刚同学们把梯形转化成了多种图形!现在让我们请这几个小组的同学说说他们的想法。大家注意听,你们的意见相同吗?你还有补充吗?
汇报:平行四边形:两个怎样的梯形可以拼成一个平行四边形?他的叙述严密吗?有补充吗?听到了吗?他的叙述多严密啊!老师喜欢你用的这个词(板书):完全相同,你能解释一下什么叫完全相同吗?
你叙述的条理多清晰啊!语言真流畅!我们把掌声送给他!
还有的同学拼成的是长方形,让我们来看看他们是怎么拼的。
正方形:正方形是特殊的长方形,那你们的推导的结果应当是一样的。是吗?
师:同学们,观察这些图形,无论长方形还是正方形,都是。再看,(移动图形)你发现什么了?
你很善于观察和总结!
过渡:看来,只要是两个完全相同的梯形,就能拼成一个。(板书)平行四边形的面积我们学过:(板书)
然后我们就可以根据两种图形间的联系来推导梯形的面积了。谁来帮老师梳理一下。
平行四边形的底就是梯形的。,平形四边形的高就是,所以梯形的面积为什么除以2?(用笔画)
刚才展示的都是拼组的方法,还有些同学只用一个梯形就完成了任务,他们用了分割的方法。你们都看懂了吗?请这个小组的同学来简单说说你们是怎么推导的。你们小组的方法真独特!方法不同,那你们推导的结论呢?
总结:同学们真爱动脑筋,(手势)想出了这么多不同的方法。但这些方法都有共同点。谁来说说?
是不是这样啊?那大家就一起把我们用转化的方法推导出的梯形面积公式读一读吧!(课件)如果用字母表示你会吗?
在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。
梯形面积课件 篇3
教学目的:
1、掌握梯形的面积计算公式,能正确地计算梯形的面积。
2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学准备:
投影、小黑板、若干个梯形图片(其中有两个完全一样的。
1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?
2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?
启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)
⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。
⑵看一看,观察拼成的平行四边形。
提问:你发现拼成的平行四边形和梯形之间的关系了吗?
出示小黑板:
拼成的平行四边形的底等于,平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。
学生讨论,指名回答,师板书。
师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:
生1:做对角线,把梯形分割成两个三角形,如下图⑴:
生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。
生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。
师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”
师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?
出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?
教学后记:
实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。
在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。
梯形面积课件 篇4
【基础知识自主学习】
一、填空题.
1.两个()的梯形可以拼成一个()。梯形的上底和下底的和等于(),梯形的高等于()的高,每个梯形的面积等于拼成的()的面积的一半,用字母公式表示是()。
2.求梯形的面积,必须知道()个条件,它们分别是()。
3.一个梯形的面积是4.2平方分米,它的下底与一个平行四边形的底边相等,高等于平行四边形的高,这个平行四边形的面积是()平方分米。
4.一个梯形的面积是76平方厘米,下底是12厘米,上底是8厘米,梯形的高是()厘米。
5.一个梯形的面积是28平方米,它的高是7米,上底是3米,下底是()米。
二、计算下面每个梯形的面积(单位:米)
【基本能力达标学习】
一、判断.(对的打,错的打)
1.三角形面积总是平行四边形面积的一半.()
2.正方形和长方形也是平行四边形.()
3.两个梯形可以拼成一个平行四边形.()
4.等底等高的两个三角形面积相等,形状也相同.()
5.平行四边形的面积或梯形面积的大小分别与它们的底和高有关,与它们的形状和位置无关.()
6.两个面积相等、形状一样的梯形,可以拼成一个平行四边形,拼成的平行四边形的面积是梯形面积的2倍.()
二、应用题.
1.一个平行四边形和一个梯形的高都是6厘米,梯形上底与平行四边形的上底都是10厘米,梯形上底比下底多3厘米,梯形面积比平行四边形的面积少多少
2.一块木板的面积是2.25平方米,锯成上底是0.6米,下底是0.4米,高是0.5米的梯形,最多可以锯多少块
3.秦王川灌区修了一条水渠,上口宽9米,下口宽6.5米,深5.4米,这条水渠横截面积是多少平方米
4.一块梯形地,上底是30米,下底减少10米变成一个平行四边形,它的面积就是1500平方米,原来梯形的面积是多少
【理解运用探究学习】
计算下面每个图形阴影部分的面积。
梯形面积课件 篇5
《梯形面积的计算》教学设计
教学目标
(1)知识目标:使学生理解掌握梯形面积计算公式,能正确地计算面积,并运用到生活中。
(2)能力目标:培养学生迁移、类推能力,并发展学生的空间观念;培养学生合作学习的能力,提高综合、抽象、概括能力;同时渗透“重合、旋转、平移”等数学思想。
(3)情感目标:培养学生善于动脑的良好学习习惯和对数学的学习兴趣,培养他们敢于探索、勇于创新的意识。教学重点
梯形面积的计算,关键是把数学知识与生活紧密地联系,利用梯形面积的计算公式解决实际生活问题。教学难点
梯形面积的计算公式的推导,关键是运用学生操作拼图和课件所提供的直观形象的动态变化过程调动学生积极性,探索、归纳公式。教学设计
一、复习
1、请同学们回忆一下,我们已经认识了哪些平面图形?你会计算这些图形的面积吗?
2、梯形的面积你们会计算吗?想知道怎样计算吗?(引出课题:梯形面积的计算)
二、推导
1、同学们还记得三角形的面积公式是怎样推导的吗?共同回忆,电脑演示。
2、你能仿照三角形面积公式的推导方法,把梯形也转化成已 学过的图形,得出它的面积计算公式吗?用课前准备的梯形,拼拼看吧。(自主学习)
3、你是怎样拼摆的?与小组同学交流。(合作学习)每组选出代表,为大家演示。师电脑演示。
4、观察拼成的图形你有什么发现呢?请大家分组研究研究。交流后完成填空(书中推导过程)。
5、回顾拼摆过程,计算拼成的平行四边形的面积,再计算其中一个梯形的面积。(师板演)。
6、我们已经会求梯形的面积了,你能总结出梯形面积的计算公式吗?
梯形的面积=(上底+下底)×高÷2 求梯形的面积为什么要除以2?(指名回答)
7、梯形的面积公式也可以用字母表示。
S=(a+b)h÷2
你能用梯形的面积公式计算吗?试一试,出示课件。
三、应用
1、运用梯形的面积公式我们来解决生活中的实际问题。课件出示例题。
指名读题,理解“横截面”。演示渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高,明确求横截面的面积就是求这个梯形的面积。
2、学生试做后集体订正。
四、练习
1、判断:检验推导过程,要求说明理由。
2、练一练:明确为什么除以2。
3、智力闯关:
第一关:求拦河坝横截面的面积,生独立解答。
第二关:求飞机两侧机翼的面积,用不同的方法解答。
第三关:求圆木的根数,明确这道题是根据什么算的。
第四关:求梯形鱼塘的高,通过课件演示,利用推导过程,帮助学生分析。
五、总结
1、这节课我们学习了什么?你有哪些收获?
2、质疑:你还有什么不懂的问题吗?
3、自己推导出梯形的面积公式高兴吗?经常动手操作、动脑分析,你会有更大的收获。
六、作业
1、个人作业:量出你手中梯形的上、下底和高,并求出它的面积。
2、小组作业;如果你手中只有一个梯形,请你剪一剪,拼一 拼,把它转化成已学过的图形,重新推导出梯形面积的计算公式。《梯形面积的计算》教学反思 新课标的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题,发现数学规律、获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法,学习水平和情感态度,促使学生向着预定的目标发展的作用。本节课我注重学生学习方法的教学,主要是利用课件演示,启发调动学生多种感官的参与:动脑、动手、动口。
1、根据学生的认知特点和注意力特点,整合课程资源,使课件演示基本贯穿整个课堂,使一些抽象的数学知识变成学生看得见,摸得着的知识。既是对学生思维的启发,又是对学生条理的整理。使学生在数学学习活动中相互合作,主动探索,推导出梯形的面积计算公式并运用公式进行计算。同时不完全依赖电脑,如让学生亲自动手拼摆,突破难点。通过课件完成例题,解决生活中的面积计算,练习有层次、有梯度、有趣味,突出重点,这样既发展了学生的个性,又培养了学生的创新精神。
2、与教法相结合,以旧引新,新知、旧知有机的融为一体,通过动手操作,对课件的直观演示进行观察、比较、推理、得出结论,从而提高学生分析问题,解决问题的能力及口头表达能力。
3、在推导梯形面积计算公式时,我放手让学生从自己的思维实际出发,给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充分展示自己或正确或错误的思维过程。在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性和积极性,最终达到使学生有效的实现对梯形面积公式的理解的目的。
4、不足之处:
练习题的设计缺少难度,学生很轻松就完成了,尤其是优等生,没有吃饱。如果将作业题中的第二题放到练习题中,这样既提高了难度,满足优等生的需求,又让学生体验到了灵活多样的解题方法,效果会更好。
梯形面积课件 篇6
教学内容:教材第90、91页练习十七第38题。
教学目标:
1.进一步理解和掌握梯形面积的计算公式,能够利用梯形面积计算公式解决生活中的相关问题。
2.提高学生运用知识解决问题的能力,培养分析、概括和思考的能力。
教学重点:深入理解和掌握梯形面积的计算公式。
教学难点:利用梯形面积计算公式解决生活中的相关问题。
教学过程:
一、基础练习:
1、填空
4.8平方米=()平方分米
62平方厘米=()平方分米
1.2公顷=()平方米
1.2平方千米=()公顷
560平方分米=()平方米
2、计算下面图形的面积.(图略)
3、揭示课题:今天这节课上一节梯形面积公式的练习和应用课,请同学们说出梯形的面积计算公式。我们是怎样推导出它的面积计算公式的?
二、指导练习:
1、练习十七第3题。
观察思考:要计算梯形面积,哪些条件是合适的?
独立完成,核对时说一说自己是怎样想的?怎样算的?
2、练习十七第4题。
问:这个花坛是什么形状?要示其面积必须知道哪些数据?题目中是直接告诉我们如何求梯形上下底的和?(如果有困难,可以小组讨论)
板书:上底+下底=4620=26(厘米)
高:20厘米
学生明确上面几个问题后独立解答,集体订正。
3、练习十七第8题。
讨论:如何剪去一个最大的平行四边形?(以梯形上底长度为底长的平行四边形是梯形里最大的平行四边形。)
如何求剩下的面积?独立做题,小组交流,全班汇报。
预设有以下两种方法:
方法一:(2+3.5)1.82-21.8
=4.95-3.6
=1.35(平方厘米)
方法二(3.5-2)1.82
=1.51.82
=2.72
=1.35(平方厘米)
三、课堂作业P91第5题。
补充练习:
1、
一个梯形,上底是1.2米,下底是0.8米,面积是3.6平方米,求这个梯形的高.
2、一个梯形的下底是12厘米,高是4厘米,面积是36平方厘米,这个梯形的上底是多少厘米?
课后反思:
由于三角形的面积还未教,所以第8题只能暂放以后进行指导练习。
今天的指导练习重点应放在第4题。因为学生疑惑为什么梯形面积计算公式中是上底加下底的和,可在列式时却是用两数相减的差来表示。针对这一困惑,教师一定要通过示意图帮助学生理解,而且要使学生明确,并非求梯形的面积一定要知道上底、下底分别是多少。在这题里,我们就是把上底加下底的和看成一个整体来求的。
补充的两道习题有数学价值。价值体现在学生能够主动根据逆向思维的难易选择合适的方法。学生一改平行四边形中求底或高用算术方法的做法,绝大多数学生都主动利用方程根据计算公式来列式。在解答过程中学生再一次体会到方程的优势。
梯形面积课件 篇7
1.在实际情境中,认识计算梯形面积的必要性。
2.在自主探索活动中,经历推导梯形面积公式的过程。
3.能运用梯形面积的计算公式,解决相应的实际问题。
尺子、两个完全相同的梯形纸片、ppt课件。
一、创设情境,引出问题。
1.出示堤坝横截面,感受求梯形面积的必要性。
预设:联想到三角形等面积公式推导方法,可尝试把梯形转化成以前学过的图形,再比较转化前后图形之间的关系,也许就能求出梯形的面积。
二、自主探索,解决问题。
1.把梯形转化成学过的图形,并比较转化前后图形的面积。
(1)预设一:把两个完全相同的梯形,“拼组”成一个平行四边形。
发现:一个梯形的面积是拼成的平行四边形面积的'一半;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形的高。
推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。
预设二:可以把梯形通过“割补”转化成一个平行四边形。
发现:梯形的面积等于拼成的平行四边形面积;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形高的一半。
推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。
2.怎样计算梯形的面积?
(1)通过比较转化前后图形之间的关系,得出“梯形的面积=(上底+下底)×高÷2”。
(2)用字母表示梯形面积公式“S=(a+b)×h÷2”
(3)运用公式求出堤坝横截面的面积“(20+80)×40÷2=20xxm?”
3.师生小结。
三、练习应用,巩固提升。
1.滑梯侧面的形状是一个梯形,已知梯形的上底是2m,下底是5m,高是1.8m,求出它的面积。
2.在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm,这个梯形的面积是多少平方厘米?(每个小方格的边长表示1cm)。
3.先测量,再计算下列图形的面积,并与同伴交流。
四、全课总结,强化延伸。
这节课,我们运用拼组法、割补法等,通过平行四边形的面积推导出梯形的面积,再一次感受了“转化”的思想。
梯形面积课件 篇8
1.在实际情境中,认识计算梯形面积的必要性。
2.引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。
3.结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。
4.通过小组合作学习,培养学生合作学习的能力。
“梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。
师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?
(点评:通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。)
师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?
师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)
师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。
(点评:启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望,又使学生明确了探索目标与方向。)
师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:
a。利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。
b。把你的方法与小组成员进行交流,共同验证。
C.选择合适的方法交流汇报。
(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)
师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。
生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。
生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。
生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。
师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?
生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。
生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。
师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。
师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?
(点评:这部分内容是这一节课的重点,也是难点。在激发起了学生的探究欲望后,采用了小组合作学习这种方式,让他们主动探究、大胆猜测、积极验证的教学方法。使学生在数学学习活动中相互合作,主动探索,真正处于课堂教学的主体地位,把新知识转化为旧知识。新知、旧知有机的融为一体,让学生通过实际操作来推导出梯形的面积计算公式并运用公式进行计算,整个过程都由学生自己来完成,使学生从中体验到了成功的喜悦。)
引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积
(1)出示篮球场的罚球区图形,请计算出罚球区的面积。
(2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?
2.练一练第1、2、3题,让学生独立完成。
我们经常见到圆木,钢管等堆成下图的形状(了示课本第28页第4题),求图中圆木的总根数,你有几种解答方法?
通过今天课堂上的学习,谈谈你的收获。
梯形面积课件 篇9
梯形的面积
教学过程:
一、创设情景,提出问题
同学们,上节课我们认识了梯形的特征。今天我们继续走进水产养殖场,看我们又有什么发现?出示甲鱼养殖场情景图和1号甲鱼池平面示意图。
谈话:观察情景图,你发现哪些信息?根据这些信息你能提出什么数学问题? 引导学生根据信息提出问题: 1号甲鱼池的面积是多少平方米?
引领学生分析问题:1号甲鱼池是什么形状的? 学生回答:梯形。
教师引领:怎样求梯形的面积呢?
今天我们一起研究研究“梯形的面积”(板书课题)。
二、小组合作,自主探究 ㈠回顾旧知,铺垫引领
1.同学们,前面我们学习了三角形和平行四边形的面积计算公式,三角形面积的计算公式是怎样推到出来的?
生:转化成平行四边形。2.教师媒体出示图形的转化过程。
㈡合作探究。1.谈话引入。
同学们,你认为我们应该从哪里入手探究“梯形的面积”呢? 学生稍作思考可能做出回答:转化成我们学过的图形来研究。那到底怎样计算梯形的面积呢?我建议大家以小组为单位来研究。2.提供素材,自主探究。⑴教师出示:友情提示。
①利用小组中的梯形学具,现独立思考,能把它转化成已学过的什么图形? ②把你的方法在小组中交流、汇报。③选择合适的方法在班内交流。⑵小组探索。
小组合作探究,动手操作,教师巡视并参与指导。
三、汇报交流,评价质疑 1.谈话引导交流。
同学们已经用不同的方法把梯形转化成了我们学过的图形,哪一小组的同学愿意把你们的研究成果与大家分享?其它小组的同学可以随时提问。
预测:
生1:我们小组是把两个完全一样的梯形拼成一个平行四边形。(边说边演示)
生2:我们把梯形现分成两个小梯形,再转化成平行四边形。(学生演示)
生3:我们把梯形分割拼成一个三角形(如下图所示)。„„
说明:若第2和第3种方法,学生思考有困难,教师可适当点拨,从多种角度分析问题,发展学生的空间观念。
2.探索归纳梯形的面积公式。⑴教师谈话引导。
同学们介绍了多种方法,现以生1的转化方法为例,探究梯形的面积计算公式(媒体出示):
⑵思考问题:
①这个梯形和转化后的平行四边形有什么关系? ②怎样推倒其面积公式?与同学进行交流。⑶学生交流
生1:梯形上底与下底的和等于拼成的平行四边形的底,梯形的高就是平行四边形的高。
生2:梯形的面积是所拼成的平行四边形面积的一半。生3:梯形的面积=(上底+下底)×高÷2。
接着,教师板书梯形的面积计算公式。教师质疑:梯形的面积为什么要除以2?
生3:因为拼成的平行四边形是两个一样的梯形,求一个面积那就要除以2.⑷请同学们,任选一种转化方法推导,来验证梯形的面积计算方法与刚才的是否一致?
⑸用字母表示梯形的面积计算公式。
如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形的面积计算公式应该怎样表示?
教师板书:S=(a+b)×h÷2
⑹安排学生利用梯形的面积计算公式求:1号甲鱼池的面积是多少平方米? 找生到黑板上扮演。(80+100)×60÷2 =10800÷2 =5400(平方米)
答:1号甲鱼池的面积是5400平方米。
四、抽象概括,总结提升
刚才通过大家猜一猜,剪一剪,拼一拼,我们把梯形转化成以前学习过的平行四边形或长方形,从而找到了梯形面积的计算方法,这种方法我们归为转化法。其实有很多新的图形都可以转化成我们学过的图形,这种数学思想方法非常重要,在我们的数学学习中会经常用到它。希望同学们今后遇见困难要多想一想,一定能找到合适的解决办法。
引导学生再一次的梳理总结梯形和转化后的长方形的关系,加深学生对梯形面积的理解。
五、巩固练习,拓展延伸
1、课本自主练习第3题:
计算下面梯形面积。(媒体逐一出示,下面的题目。)
做题要求:
⑴观察上面图形,说出底和高各是多少? ⑵根据梯形面积计算公式,列算式并计算结果。⑶学生做后集体订正。
2.课本自主练习第4题。(媒体出示。)你能求出下面图形的面积吗? 友情提示:
⑴让学生想一想:要想求上面图形的面积,必须知道什么条件? ⑵这些条件不具备,怎么办?
⑶引导学生先测量出梯形的底和高,在根据公式列式计算。3.课本自主练习第5题。(媒体出示。)某水渠的横截面是梯形(如图)。渠口宽8米,渠底宽5米,渠深1.8米,求它的横截面的面积。
做题要求:
⑴认真审题,搜集信息。⑵学生独立列示解答。
温馨提示:求水渠横截面的面积,实际就是求谁的面积? 4.课本自主练习第6题。(媒体出示)
做10件这样的,至少
用布多少平方米?
温馨提示:
⑴认真审题,独立完成。⑵做10件这样的,至少用布多少平方米?必须先求什么?
⑶列示解答。
温馨提示:等底等高的平行四边形形状有变化,面积不变。5.拓展练习。课本自主练习第11题。(媒体出示。)
竹篱笆全长84米。这个花园的面积有多大?
温馨提示:
⑴此题适合学习程度比较好的和城市孩子学生做。
⑵这个花园是什么形状的?求它的面积时,还缺少什么条件?怎样求? ⑶学生独立列示解答。6.课下练习。
⑴课本自主练习第7题。
木材场常常把木材堆成下图的形状,在计算木材根数时,通常用下面的方法:(顶层根数+底层根数)×层数÷2
要求:①请算出木材的根数。
②你能用梯形的面积公式解释上面的算法吗?
⑵《新课堂》67页,2至4题 课下学生独立做在练习本上,老师第天检查,班内集体订正。7.课堂小结
同学们,通过今天这节课的学习,你有什么收获?(教师引导,学生回顾整理,师点名汇报,全班交流。)
板书设计: 梯形的面积
梯形面积课件 篇10
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。
因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。
二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。
三、教学目标设计
1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。
2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。
四、教学重点难点
教学重点
1.理解并掌握梯形的面积计算公式。
2.运用梯形的面积计算公式解决问题。
教学难点
梯形面积公式的推导过程。
五、教学策略设计
我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。
六、教学过程设计
教学环节一
一、汇报预习的成果
(预习单)
1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、对于梯形,你们已经知道了什么?
3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?
4、如何推导梯形的面积计算公式?谈谈你的想法。
学生汇报前三个:
生1:我发现任何梯形都可以分成两个三角形。
生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。
师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。
(揭示课题)
设计意图
引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。
教学环节二
二、"假设--实验--验证",引导学生体验数学知识"再创造"的过程。
师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。
(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)
生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?
生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?
生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。
设计意图
交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。
教学环节
三、应用知识,自主探究
师:同学们是不是都有自己的想法了,想不想马上动手试试?
(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)
教学环节四
设计意图
对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。
四、汇报展示
师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。
生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。
师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。
设计意图:
引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。
教学环节
五、在实践应用中拓展、延续数学知识的"再创造"。
师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。
(出示基本练习)测量数据,并计算出这些梯形的面积。
设计意图:
学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。
六、作业设计
师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。
(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)
实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。
七、板书设计
梯形的面积
梯形的面积=(上底+下底)×高÷2转化
S梯形=(a+b)×h÷2(学生的方法展示)
八、预设效果
本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。
九、课外知识的准备
了解多种转化的方法。
梯形面积课件 篇11
背景:
《数学课程标准》指出:数学教学,要紧密联系学生的实际和生活环境,从学生的经验和已有知识出发,创设生动有趣,有助于学生自主学习、合作交流的问题情境,引导学生开展观察、操作、猜测、验证、归纳、推理、交流、反思等活动,学会从数学的角度去观察事物、思考问题,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。因此,创设问题情境是数学教学的重要策略之一。情境创设能够激发学生的问题意识和促进探究,使思维处于在爬坡状态。引发认识的不平衡并帮助学生生成新的认识。我认为在数学探究活动中,提出一个问题比解决一个问题还重要。这样学生就能达到良好的效果,从而使数学教学活动不断走向深入。现从一个教学片断来谈谈实际教学中如何正确创设情境。
案例:
(课件:金丰苑内一栋栋漂亮的楼房特别引人注目,在周围绿树成荫、环境优雅,但在一栋楼房前有一块地荒着的)
师:如果你是设计师,针对这块荒地,你打算怎样设计?
生3:这块梯形地接近于长方形,能否可以近似地看成长方形估算一下?
生1:不行。估算毕竟是近似的,买多了浪费,买少了麻烦,最好能求出实际面积。
生2:对。能否根据平行四边形的面积求法,转化成其他图形呢?
师:那就请你们试一试吧。用你的方法,设法求出荒地的面积。
生1:割补成一个长方形,面积=[(下底-上底)÷2+上底]×高再计算
生2:用两个完全一样的梯形拼成一个长方形,面积=(上底+下底)×高÷2
生3:用两个完全一样的梯形拼成一个平行四边形,面积=(上底+下底)×高÷2
师:同学们真聪明,想出了那么多方法。现在你还有什么想法吗?
生1:可以利用这些公式求出梯形的面积,就可以去铺草坪了。
教师引导学生观察这些公式的共同点是什么?学生讨论得出:其实这么多公式,归根结底就是一个公式:梯形面积=(上底+下底)×高÷2。
师小结:我们通过不同的方法把梯形转化成熟悉的图形,归根结底就是一个公式:梯形面积=(上底+下底)×高÷2。(师板书公式)
情境是联系学生经验与学习内容之间的载体,创设一种合情的情境,能营造一种和谐的氛围。宽松和谐的求知氛围是启发学生积极提问的重要前提。它可以给学生留有思维、想象、创新的空间,启发学生自己提出问题;更主要的是学生在这样的氛围里愿意说,敢于说,有助于教师了解学生原有的生活经验和知识起点,为教学的展开铺垫了一个良好的基础。
课一开始,教师就为学生创设了生活中非常熟悉的情景,为学生的提问准备了材料。随后教师的一句“如果你是设计师,针对这块荒地,你打算怎样设计?”激发了学生提问的欲望,把学生真正放在了主体的地位,使提问不再是老师的专用权利,更是学生的权利。师生真正成为学习的共同体。整个过程中,教师都以朋友身份进入课堂,允许学生有疑就问,允许“插嘴”,允许学生说错,不随便否定学生的提问,更多的是给予肯定和表扬,而且经常用“你还有什么问题吗?”“你还有什么想法吗?”等亲切的语句,消除了学生的紧张、戒备等心理,消除了学生的后顾之忧,让学生以最大的热情投入到活动中,敢问,想问,以积极的状态进行探究。
选用学生熟悉的、生活中的实例为素材。情境创设的录像,让人感到亲切熟悉,看到荒地,让学生设计,接着就进行自然设计,而在设计中又遇到了问题:必须先知道面积,而这是梯形,面积怎么求?自然而然,很顺利地过渡到本节课的焦点问题上——怎样求梯形的面积,学生能提出这样有意义、有价值的关键性的问题,源于他们对提供的材料熟悉,觉得有东西可问。
适时点拨,教给学生寻找问题的`方法。找问题可从以下几方面去找:在知识的“生长点”上找问题,从旧知到新知的迁移过程中发现和提出问题。本节课学生提出“这块梯形接近于长方形,能否可以近似地看成长方形估算一下”学生反驳“不行。估算毕竟是近似的,买多了浪费,买少了麻烦,最好能求出实际面积”。这时,教师适当点拨“用你的方法,设法求出荒地的面积”;另外,还可以从知识的结合点上找问题,也就是在新旧知识的内在联系上发现和提出问题。比如本节课教师让学生动手操作,自己经历“操作——观察——猜想——验证”数学化的学习过程,通过对知识的理解、发现与生成中达到目的,从而体验数学“再创造”的过程;也可以让学生在自己不明白,不理解的地方找问题,多问“为什么?”、“是什么?”、“怎么办?”。在这节课中,每到有必要的地方,老师都能恰当地点拨提醒:“你还有什么问题?”、“你有什么想法吗?”暗示学生从这里下手提问题。学生学到的不仅仅是知识,更是一种思考问题的方法。
留给学生质疑的时间和空间。学生有疑好问,正是学生善于思考的表现。教师要提供学生“问题场”,在教学上要多给学生锻炼的机会,把学习的主动权还给学生,使学生真正成为学习的主人。留给学生足够的时间和空间是提供“问题场”的一种手段。学生在这样的空间和时间里能自己发现问题,提出问题,解决问题。这节课中“是呀,那么多公式,在计算时该选哪一个?”的问题出来后,教师再组织学生讨论,并适当引导追问“这些公式的共同点是什么?”学生走向深入的探究,在真正的思考,原来都可以转化成:梯形的面积=(上底+下底)×高÷2。学生学到不仅是这个公式,更是一种转化的数学思想方法。
梯形面积课件 篇12
教学内容:
课本第97~98页练习二十一。
教学目标:
1、通过练习使学生能较为熟练地运用梯形的相关知识去解决问题。
2、培养小组的互助合作精神,体验在这种互助中取得成功的愉悦感受。
3、培养学生自助和互助的能力,学会与同伴合作、交流,提高自己提问求助以及指导别人的能力。
教学重点:
熟练运用梯形的相关知识求梯形的面积以及底和高。
教学难点:
提高整理、分析、解决问题的能力。
教学准备:
有关的课件。
教学过程
一、复习导入
1.梯形。
(l)我们已经学过了梯形,什么是梯形?
(2)谁来说一说梯形各部分的名称。
(3)在梯形中比较特殊的梯形是什么?(出示直角梯形和等腰梯形。)
2.梯形的面积。
(1)我们在前一节课里利用转化的方法推导出的梯形面积公式是怎样的?
出示:梯形的面积=(上底+下底)脳高梅2S=(a+b)h梅2
(2)已知梯形的面积以及上底和下底,如何求得高呢?
二、探究新知
灵活运用梯形的面积计算公式解决问题。
出示:一块梯形麦田,上底是35M,下底是25M,面积是1140M2,高是多少M?
思路导引:
方法一:根据梯形的面积计算公式S=(a+b)脳h梅2,可以推导出h=S脳2梅(a+b),代入已知条件直接计算。
方法二:设高为xm,列方程求解。
学生尝试解答,小组汇报。教师根据学生汇报板书。
方法一:1140脳2梅(35+25)方法二:解:设高为xm.
=2280梅60(35+25)x梅2=1140
=38(m)60x梅2=1140
x=38
答:高是38m.
提问:求高除了用上面的公式以外,还有别的方法吗?
学生自主发言,再由其余同学和教师来判断是否可行。
三、基础练习
1.课本第97页练习二十一第1题。
(1)教师出示水渠模型,帮助学生理解:水渠横截面面积就是梯形的面积,渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高。
(2)学生独立完成习题,教师巡视,发现问题及时纠正。
(3)指名板演,再讲解。
2.课本第98页练习二十一第6题。
注意让学生观察图示找到计算所需条件。花坛的三面围篱笆,形成一个直角梯形。20m就是它的高,用46m-20m可以得到梯形上底与下底的和。
2.课本第98页练习二十一第8题。
(1)观察这堆圆木的横截面,你有什么新的发现?
学生讨论后汇报,教师提示:横截面是梯形,因此可以用梯形面积计算公式来计算圆木的总根数。
(2)学生计算验证。
(3)圆木顶层根数、底层根数、层数各是梯形的哪一部分?
教师引导学生,并归纳:圆木顶层根数就是梯形的上底,底层根数就是梯形的下底,层数就是梯形的高。
3.课本第98页练习二十一第9题。
(1)学生汇报自己测量的数据和计算结果。
(2)集体交流测量方法和计算方法。
4.课本第98页练习二十一第11*题。
(1)先引导学生读题,理解题意。
(2)组织学生比赛,看谁的方法最多。
(3)汇报交流,全班集体订正。
首先要考虑如何剪去一个最大的平行四边形。应该是以梯形上底长度为底长的平行四边形。剩下的是三角形,可以用两种方法求面积。
方法一:梯形的面积-剪去的平行四边形的面积
(2+3.5)脳1.8梅2-2脳1.8=1.35(cm2)
方法二:用梯形的下底长减去梯形的上底长得到剩下三角形的底长,乘梯形的高,再除以2,得到剩下的三角形的面积。
(3.5-2)脳1.8梅2=1.35(cm2)
四、总结评价。
通过这节课的学习,你在哪些方面有了提高?
上一篇:个人货物运输合同书(集锦十一篇)
下一篇:试用期电工工作总结(优选5篇)
- 副校长工作总结(必备14篇)05-17
- 二年级我的妈妈日记集锦05-17
- 2024文艺部年度工作总结12篇05-17
- 维修试用期工作总结05-17
- 幼儿舞蹈教学计划(汇编14篇)05-17
- [实用写作] 梯形的面积公式 文章素材(经典版)09-09
- 最新质量事故报告实用05-17
- 学习部计划必备十二篇05-17
- 开展文体活动总结13篇05-17
- 圆柱的表面积课件合集15篇03-18
- 销售代理协议精华05-17