1、小数乘整数:
意义——同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少,或3个1.5的和是多少。
2、小数乘小数
意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
3、小数乘法的计算方法:先把小数扩大成整数,按整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点,积的小数部分位数不够时,要在前面用0补足。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简。
4、规律:一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
5、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
6、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
7、小数四则运算顺序跟整数是一样的。
8、运算定律和性质:
加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
除法:除法性质:a÷b÷c=a÷(b×c)
二、倍数与因数
1、如果a×b=c(a,b,c都是非0自然数),则a和b都是c的因数,c是a和b的倍数,例:3×4=12,3和4都是12的因数,12是3和4的倍数;如果a×a=c(两个a是相同的乘数),则a是c的因数,c是a的倍数,例:3×3=9,3是9的因数,9是3的倍数。
2、找因数的方法:找因数就是找所有能乘得这个数的乘数,从1开始一对一对地找,看哪两个自然数的积是这个数,直到两个乘数逐渐接近,没有其它乘数能得到这个积为止。(一个数最小的因数是1,最大的因数是它本身。)
3、找倍数的方法:用这个数分别乘1,2,3,4……,所得的积就是倍数。(一个数最小的倍数是它本身,没有最大的倍数。)
三、2,3,5的倍数特征
1、2的倍数特征:个位上是0,2,4,6,8的数是2的倍数(能被2整除的数,是2的倍数)。
2、奇数和偶数:能被2整除的数是偶数,不能被2整除的数是奇数。(0是最小的偶数,1是最小的奇数)
3、5的倍数特征:个位上是0或5的数是5的倍数。
4、2和5公倍数的特征:个位上是0的数是2和5共同的倍数。
5、3的倍数特征:各个数位上的数字之和是3的倍数,这个数就是3的倍数。
6、既是2和5的倍数,又是3的倍数的数:先满足个位上是0,再满足各个数位上的数字之和是3的倍数。例:690,30,660,780,1110……
7、性质:一个数的倍数的倍数,依然是这个数的倍数。例如:3和9,9的倍数都是3的倍数;4和8,8的倍数都是4的倍数。
四、质数和合数
1、质数:一个数只有1和它本身两个因数,这个数叫作质数。(质数只有两个因数)
2、合数:一个数除了1和它本身以外还有其它因数,这个数叫作合数。(合数至少3个因数)
五、100以内的奇数,偶数,质数,合数
1、奇数:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99共50个奇数。
2、偶数:0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,86,84,88,90,92,94,96,98,100共51个偶数。
3、质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
4、合数:4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,70,72,74,75,76,77,78,80,81,82,84,85,86,87,88,90,91,92,93,94,95,96,98,99,100
六:数的奇偶性
1、加减法中:同为偶,异为奇。
2、其他运算:自己举例验证。
3、若干个奇数相加,如果奇数的个数是偶数,则结果为偶数;如果奇数的个数是奇数,则结果为奇数。
4、运动过程中的奇偶性:物体在两点之间运动,奇数次后,与开始状态相反,偶数次后,与开始状态相同。
【知识点】:
1、按一定顺序手口一致地数出每种物体的个数。
2、能用1-10各数正确地表述物体的数量。
快乐的家园(10以内数的认识)
【知识点】:
1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。
2、在数数过程中认识1-10数的符号表示方法。
3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。
玩具(1~5的认识与书写)
【知识点】:
1、能正确数出5以内物体的个数。
2、会正确书写1-5的数字。
小猫钓鱼(0的认识)
【知识点】:
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、学会读、写“0”。
文具(6~10的认识与书写)
【知识点】:
1、能正确数出数量是6-10的物体的个数。
2、会读写6—10的数字。
本文网址:http://m.jk251.com/jiaoan/17287.html
上一篇:经典初中教案主要山脉
下一篇:PS海报设计套索选取魔棒工具