导航栏

×
范文大全 > 小学教案

圆面积 教案精选

大家对教案都很熟悉了吧,多写教案能够提升我们的策划能力,一份优质的教学方案往往来自教师长时间的经验累积,怎样写好自己的小学教案呢?下面是小编为您精心收集整理,为您带来的《圆面积 教案精选》,仅供参考,希望对您有帮助。

《圆的面积》教学设计

教学内容:

圆的面积的概念,圆面积计算公式

教学目的

1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程掌握圆面积的计算公式。

2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际应用。

教学重点:圆面积公式的实际应用

教学难点:圆面积公式的推导

教学准备:

教具:圆面积演示教具及平行四边形拼割教具。

教学过程:

一、复习:

1.口算:0.12928∏18.84÷∏21.98÷∏

2.已知圆的半径是4.5米,它的周长是多少?

3.一个长方形的长是6米,宽是3米,它的面积是多少?

二.新授

1.圆的面积的含义:

提问:面积所指的是什么?

2.圆面积公式的推导

怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但是我们可以仿照求平行四边形的方法(割补法)把圆形转化为已学过的图形——长方形。怎样割法呢?教师拿出教具演示。

接着教师边提问边完成圆面积公式的推导:

长方形的面积=长×宽

↓↓↓

圆的面积=

用s表示圆的面积,那么圆的面积公式可以写成:s=∏r2

3.圆面积公式的应用

出示例3:一个圆的半径是4厘米,它的面积是多少平方厘米?

(问:要求圆的面积的条件是什么?怎样列式呢?)

让学生到黑板板演,然后集体评讲。

三.巩固练习

1.根据条件,求圆的面积:

(1)半径为2分米

(2)直径10厘米

2.限时练习,判断下面各题(规定2分钟内完成,每隔30秒报一次时间)

(1)半圆的面积等于该圆面积的一半()

(2)两个半圆可以拼成一个整圆()

(3)如果一个圆的半径是2厘米,那么它的周长和面积相等()

(4)一个圆的半径扩大3倍,它的面积扩大9倍()

3.比拼练习(每组完成后派代表上黑板做,做完后,每组再派代表上黑板批改另外三组,改对一题该组加5分,改错一题扣该组4分)

(1)已知r=8厘米s=?

(2)已知d=20厘米s=?

(3)已知r=0.1米s=?

(4)已知d=0.4米s=?

4.能力扩展

在一个长、宽分别是6厘米和4厘米的长方形内剪一个最大的圆,圆的面积是多少平方厘米?

四.总结

这节课我们学习了什么内容?要求圆的面积我们必须知道什么?

五.布置课外作业:

Jk251.coM编辑推荐

梯形面积的计算练习 优秀小学教案 教案精选


第六课时:梯形面积的计算练习课

教学内容:完成第21页练习四

教学目标:

使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

教学过程:

练习四

一、第2题让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

二、第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。

三、第5题要注意两个问题:1、统一面积单位;2、讲清楚数量关系。

四、第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

五、针对学生在学习过程中出现的问题适当的进行补充和强化。

组合图形面积的计算 优秀小学教案 教案精选


教学内容

教科书第80页的例题,完成例题下面的“做一做”和练习十九的题目.教学目的使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积.教具准备将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上.教学过程一、复习“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab“第二个图形呢?”……学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算二、新课1.教学例题.教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的.在实际生活中有时需要计算这些组合图形的面积.例如有些房子侧面墙的形状是这样的,出示小黑板,如:“这个图形的面积我们过去学过吗?”再让学生仔细观察一下.“我们虽然没有学过计算这个图形面积的公式,可是能不能把这个图形分成几个我们已经学过的图形呢?”“怎样分?”指名学生到黑板前画一画.教师标出相关尺寸.“现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?”让学生看教科书第80页上的例题,把书上的算式填完全.教师:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、三角形、平行四边形或是梯形组合而成的.计算这些图形的面积,一般是先把它分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求出整个组合图形的面积.2.做例题下面“做一做”中的题目.先让学生读题.“这块菜地可以看成是由哪些图形组合而成?”让每个学生在练习本上列式计算.做完后,集体核对.三、巩固练习做练习十九中的题目.第3题,教师出示一面少先队的中队旗.“要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?”“你是怎样做的?”可以让几个学生说一说自己的想法.一般来讲,可以有以下几种做法:计算两个梯形面积的和;一个长方形和两个三角形面积的和;一个长方形的面积减去一个三角形的面积.让学生选一种做法,量出所需尺寸,再计算出中队旗的面积.第4题,先让学生读题,再提问:“这个机器零件的横截面图的面积怎样计算?”让几个学生说一说自己的想法.“根据题目中标出的尺寸,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积)让学生在练习本上列式计算,再集体核对.四、作业练习十九的第1、2题.

梯形面积的计算教学设计 教案精选篇


教学目的:1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点:正确地进行梯形面积的计算。

教学难点:梯形面积公式的推导。

教学准备:投影、小黑板、若干个梯形图片(其中有两个完全一样的。

教学过程:

一、导入新课

1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

3、创设情境:

投影显示:

启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

二、新课展开

1、操作探索

⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

提问:你拼成了什么图形,怎样拼的?演示一遍。

⑵看一看,观察拼成的平行四边形。

提问:你发现拼成的平行四边形和梯形之间的关系了吗?

出示小黑板:

拼成的平行四边形的底等于(),平行四边形的高等于(

),每个梯形的面积等于拼成的平行四边形面积的()。

⑶想一想:梯形的面积怎样计算?

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么?为什么要除以2?

⑷做一做:计算“前面出示的梯形”的面积。

2、扩散思维

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

3、抽象概括

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

生:s=(a+b)h÷2

4、反馈练习

完成课本p81做一做(一人板演)

三、应用深化

出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

解释:举例说明“横截面”的含义。学生尝试计算:

(2.8+1.4)×1.2÷2

=4.2×1.2÷2

=5.04÷2

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

2、反馈练习:完成p82第1题

四、巩固练习:p82第2题

五、全课小结

六、作业:p82第3、4题

教学后记:

实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。

在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。

本文网址:http://m.jk251.com/jiaoan/19861.html

相关文章
最新更新

热门标签