导航栏

×
范文大全 > 小学教案

梯形面积的计算练习 优秀小学教案 教案精选

作为小学老师,你一定写过教案吧,教案在我们教师的教学中非常重要,一份优质的教学方案往往来自教师长时间的经验累积,怎样才能写好小学教案?希望《梯形面积的计算练习 优秀小学教案 教案精选》能够为您提供帮助。

第六课时:梯形面积的计算练习课

教学内容:完成第21页练习四

教学目标:

使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

教学过程:

练习四

一、第2题让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

二、第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。

三、第5题要注意两个问题:1、统一面积单位;2、讲清楚数量关系。

四、第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

五、针对学生在学习过程中出现的问题适当的进行补充和强化。

jK251.com其他人还在看

梯形面积的计算教学设计 教案精选篇


教学目的:1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点:正确地进行梯形面积的计算。

教学难点:梯形面积公式的推导。

教学准备:投影、小黑板、若干个梯形图片(其中有两个完全一样的。

教学过程:

一、导入新课

1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

3、创设情境:

投影显示:

启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

二、新课展开

1、操作探索

⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

提问:你拼成了什么图形,怎样拼的?演示一遍。

⑵看一看,观察拼成的平行四边形。

提问:你发现拼成的平行四边形和梯形之间的关系了吗?

出示小黑板:

拼成的平行四边形的底等于(),平行四边形的高等于(

),每个梯形的面积等于拼成的平行四边形面积的()。

⑶想一想:梯形的面积怎样计算?

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么?为什么要除以2?

⑷做一做:计算“前面出示的梯形”的面积。

2、扩散思维

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

3、抽象概括

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

生:s=(a+b)h÷2

4、反馈练习

完成课本p81做一做(一人板演)

三、应用深化

出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

解释:举例说明“横截面”的含义。学生尝试计算:

(2.8+1.4)×1.2÷2

=4.2×1.2÷2

=5.04÷2

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

2、反馈练习:完成p82第1题

四、巩固练习:p82第2题

五、全课小结

六、作业:p82第3、4题

教学后记:

实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。

在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。

梯形的面积导学案 优秀小学教案 教案精选


教学内容:

梯形的面积

教学目标:

1、使学生理解并掌握梯形面积的计算公式,能正确地应用公式进行计算。

2、通过操作,培养学生的迁移类推能力和抽象概括能力。

3、培养学生应用所学知识解决实际问题的能力,发展空间观念,引导学生运用转化的思想探索规律。

教学重点:

理解并掌握梯形的面积计算公式。

教学难点:

理解梯形面积计算公式的推导过程。

教学准备:

两个完全一样的梯形纸板和剪刀。

教学过程:

一、引入课题:

1.计算右面图形的面积。

2.三角形面积的计算公式是怎样推导出来的?

为什么要“除以2”?

3.指出右面梯形的上底、下底和高。

4.导入:我们已经掌握了平行四边形、

三角形的面积计算公式,有了这两方面的基础,

我相信大家一定也能把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?

二、探索新知:

推导梯形的面积计算公式。

1.操作感知:你能用求三角形面积的方法,

用两个完全一样的梯形推导出梯形面积的计算公式吗?

拼拼看,并比一比谁的方法多。

2.学生操作,互相讨论、交流、汇报,最后教师

总结三种拼法。

重点引导学生理解第一种方法,明确:

①两个完全一样的梯形能拼成一个平行四边形。

②这个平行四边形的底等于梯形的上、下底之和,

高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。

因为:平行四边形的面积:底×高

所以:梯形面积:(上底+下底)×高÷2(板书)

3.想一想:如果是两个完全一样的直角梯形,能拼成什么图形?

教师点拨:两个完全一样的直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。

4.用字母表示公式。

引导学生知道:如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式可以表示为:s=(a+b)h÷2(板书)

5.要求梯形的面积必须知道哪些条件?为什么要“除以2”?

三、巩固练习

1.一个堤坝的横截面如右图,它的面积是多少?

2.计算下边梯形的面积,与同学交流你的方法。

四、总结全课

梯形面积的计算公式是怎样推导的?怎样用字母怎样表示梯形的面积公式?

五、作业

1、课内作业:p30第3、4题。

2、优化作业

角形面积的计算练习优秀模板


第四课时:三角形面积的计算练习课

教学内容:练习三第4—10题及思考题

教学目标:

使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

教学过程:

一、第4题口算下面各题,将结果直接填写在书上。

第5题可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

二、第6题要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

三、第9题测量红领巾高时,可以启发学生把红领巾对折后再测量。

四、第10题要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

五、思考题每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

正方体表面积的计算 优秀小学教案 教案精选


第二课时:正方体表面积的计算

教学内容:教材第35页例2及练习六的相关题目。

教学目标:

1根据正方体的特征,推导出正方体表面积的计算方法。

2学会解决实际生活中有关正方体表面积的计算问题,培养思维的灵活性。

3感受数学与生活的密切联系,体会数学学习的价值。

教学重点:正方体表面积的计算方法。

教学难点:解决生活中有关长方体、正方体表面积的计算问题。

教学准备:正方体展开图。生:正方体纸盒。

教学过程:

一、复习引入

1、什么是长方体的表面积?

2、计算下图长方体的表面积。(图略。长5分米,宽4分米,高3分米)

3、什么是正方体的表面积?正方体6个面有什么关系?每个面的面积怎样算?

如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?今天,这节课我们就来学习正方体表面积的计算方法。[板书课题]

二、实践探索

1、教学例2

看看昨天自己剪开的正方体表面展开图,大家能说出正方体的表面积如何求吗?

要想知道包装这个礼盒至少要多少包装纸,也就是求什么?

“至少”是什么意思?

学生列式计算,并说说第一步算出的是什么?第二步算出的是什么?(指名板演,集体订正)

2、p35页做一做

让学生独立完成,教师巡视,了解学生的解答情况,看学生是否注意到鱼缸上面没有盖,适时提醒。最后组织学生汇报答案,集体订正,订正。

三、巩固练习

p36第6题

p37第7题

四、作业:p36第4、5、6题。

板书设计:

正方体表面积计算

例21.2*1.2*61.22*6

=1.44*6=1.44*6

=8.64(平方分米)=8.64(平方分米)

正方体表面积=棱长*棱长*6

教学反思:

【练习重心适当偏移】

正方体是特殊的长方体,所以其表面积公式的推导及灵活应用对学生而言都相对容易理解掌握。因此,在今天的教学中,我灵活调整了练习重心,重点指导学生解决实际生活中有关长方体表面积的计算问题,培养思维的灵活性。在发展学生的空间观念上让学生上一个台阶,由知道长、宽、高就能想像出实物图形,并能根据生活实际确定所缺少的面应该如何求。

【练习中暴露的问题】

36页第6题虽然绝大多数学生会正确列式,但从结果反馈来看错误相当多。主要有以下两方面原因:一是计算问题。其中一个面的面积为59.5*42.5,转化为整数乘法是三位数乘三位数,部分学生不会迁移,乘到第二步时即停止或将百位上的4乘595的积对位错误。二是单位换算问题。平方厘米与平方米之间的进率应该是10000,而并非学生认为的100。

平行边形面积的计算说稿 优秀小学教案 教案精选


平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

2、教学目标:

(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

(2)通过操作,让学生尝试用转化的思想方法解决新的问题。

(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

3、教学重点:平行四边形的面积计算。

4、教学难点:理解平行四边形面积计算公式的推导过程。

二、教法学法

平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作观察思考归纳概括初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知形成表象抽象概念。

教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

三、教学过程

(一)复习铺垫

教具逐个出示:

1、图(1)是什么图形?它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?

2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?

学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)

3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?

学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)

(二)导入新课

图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)

你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。

(三)引导探究

1、学生独立思考,动手操作,尝试计算平行四边形的面积。

(教师巡视,学生计算1号学具纸片平行四边形的面积)

谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)

反馈交流:根据学生的回答教具演示“转化过程”。

角形面积的计算 小学教案范例


教学内容

p27~28

教学目标

1、使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。

2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。

3、引导学生运用转化的方法探索规律。

教学重点:

理解并掌握三角形面积的计算公式。

教学难点:

理解三角形面积计算公式的推导过程。

教学准备:

投影和自制三角形面积演示纸板等

教学过程:

一、创设情境,引入课题

右图是一张三角形彩纸,它的面积是多少?

提问:这块彩纸是什么形状?你会算出它的面积吗?

引入:怎样把三角形转化成我们已学过的图形,然后算出它的面积呢?我们这节课就来探讨这个问题。

二、探索新知

1.推导三角形面积计算公式。

(1)操作感知:让学生用学具并用自己喜欢的办法探索怎样把三角形转化成平行四边形。

(2)汇报、交流,总结两种转化方法。

重点讨论:①拼成的平行四边形与原来的三角形有什么关系?②怎样计算三角形的面积?

形成共识:①两个完全一样的三角形都可以拼成一个平行四边形,这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。②因为三角形的面积=拼成的平行四边形面积÷2

强化理解推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?

板书:三角形面积=底×高÷2

(3)用字母公式表示。

如果用s表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:s=ah÷2。(板书)

2.即时练习:让学生完成课前引入中的求彩纸面积的问题,并组织交流。

4×3÷2=12÷2=6(c㎡)

通过交流引导学生进一步认识三角形面积和平行四边形面积计算方法的异同点。

三、巩固练习

指导学生完成p28“试一试”。

四、总结全课

让学生谈谈这节课的收获和体会:怎样求三角形的面积?三角形面积的计算公式是怎样推导的?

五、作业

1.课内作业:p28“练一练”第一题。

2.课外作业:优化作业相关练习。

梯形的面积与反思 优秀教案推荐


课开始,我出示了五个梯形,两个完全一样的任意梯形,一个从梯形上底的一个顶点作高且高落在梯形外面的梯形,一个直角梯形和一个等腰梯形,要求同学们说说"这些梯形的特征".

生1:梯形有上底,下底和高.

生2:梯形只有一组对边平行.

这时出现了学生已有的错误资源,部分学生的知识结构中梯形的特征和各部分的名称相混淆.我的教学策略是:观察黑板上的五个梯形,让学生们理性地感悟到:梯形只有一组对边平行是它的特征,给平行的一组对边起的名字是叫"底",因为这两条底的长短不同,所以一条底叫上底,另一条底叫下底.

接着,揭示本节课教学目标——梯形的面积计算.

师:谁已经知道了梯形的面积计算方法

生1:我是通过预习知道的,梯形的面积=(上底+下底)×高÷2.

师:这个梯形的面积公式表达的是什么意思比如"÷2"表示什么意思

生2:我是这样想的,两个完全一样的三角形可以拼成一个平行四边形,那么,两个完全一样的梯形也可以拼成一个平行四边形,一个梯形的面积是其中的一半,所以要"÷2".师:哪位同学上来拼拼看.(只有一会儿的冷场,有好几个同学举手,我指定一个女同学上黑板拼,她选择两个完全一样的梯形开始拼.第一下拼没成功,下面有同学提醒她倒过来拼,第二下倒过来拼也没成功,下面有同学提醒她要转过来,第三下成功了!)

师:(拿出另外一个和黑板上完全一样直角梯形)谁再上黑板来拼,也成一个平行四边形(指定一个男同学上黑板拼,比较顺利,两下就成功了.)

师:观察拼成的平行四边形,和梯形相比较,你知道了什么

生3:它们的高是一样的,梯形的上底和下底合起来是平行四边形的底.(我又让几个同学说说他们的发现,并上黑板比比划划)

师:(拿出另外一个和黑板上完全一样一个从梯形上底的一个顶点作高且高落在梯形外面的梯形)哪个同学上来一下就拼成一个平行四边形

生4:(他接过我手中的梯形,看看有转了一下,放在黑板上同样的梯形旁就拼成了一个平行四边形)我是看它的上底和下底,只要上底和下底拼在一起就成了.

师:(拿出一个任意的梯形和黑板上不一样的梯形)谁也能和刚才的那位同学一样,一下就可以拼成一个平行四边形

一下用两个完全一样的梯形拼成一个平行四边形,对小学生来说有一定的挑战力,况且已有成功的前例,愿意上台表演的同学肯定多.而这时用"一个任意的梯形和黑板上不一样的梯形"去让学生拼,以达到加深对"用两个完全一样的梯形才可以拼成平行四边形"的理解.

生6:(举手的人更多了,教师指定一个学生上黑板)一下没成功,二下也没成功.4师:谁再来拼

生7:一下没成功,二下也没成功(下面有同学说,两个梯形不一样拼不成的),这位同学回到自己的座位上.

师:(这时还有一位同学高高举着手)你能(他点点头)上来拼.

生8:(一下没成功,二下也没成功,……)真的不行!

然后,我引导学生们总结梯形面积的计算方法,并穿插了一道求梯形面积的练习题.想培养学生的求异思维,因此让学生们思考推导梯形面积的另外方法,(冷场好久,没人举手),我在电脑里演示了"沿梯形的中位线剪开,旋转平移拼成一个平行四边形".到此,我并没有强求学生们继续思考其他的推导梯形面积的方法,而是转入巩固练习的教学环节.

既然,学生没有其它方法推导梯形的面积公式,我认为,不必强求他们一定要去探究出其它推导方法.这里我演示"沿梯形的中位线剪开,旋转平移拼成一个平行四边形"一种推导方法,目的是用他人的思维去影响学生们的思维.

上册计算练习 优秀教案推荐


一、复习口算

60×9=50×90=600÷30=20×34=60×900=

43×2=11×600=13×600=75-18=927÷9=

70-30=8000-3000=120÷3=3×900=32×30=

900÷3=320÷3=210×4=70×20=0÷460=

二、复习列竖式计算。

(一)列竖式计算并验算。

329÷25416÷34235÷76

(二)列竖式计算下面各题,然后比较每组题的试商情况

179÷21291÷44343÷33

179÷26291÷42343÷37

179÷29291÷48343÷35

三、简便计算

(1)8+23+91(9)123-(17+23)(17)16×25×125

(2)45×3×2(10)179-51-49(18)45×16

(3)25×23×4(11)324+89+76+111(19)65+(178+35)

(4)13+97+100(12)45×4×2×25(20)178+45-78

(5)280÷5÷2(13)167+102(21)126+36-36+74

(6)125×5×8(14)167-102(22)178-(78+65)-35

(7)160÷32(15)167-98(23)79-34+21-66

(8)210÷3÷7(16)167+98(24)138×34÷34

(25)35×18(25)277+204(27)25×32×12四、混合计算:

(1)在○里填上“﹥”、“﹤”、“﹦”。

90÷9+1○90÷(9+1)

770-(530-230)○770-(530+230)

540÷6÷15○540÷(6×15)

30×8+12○30×(8+12)

18+90÷18○(18+90)÷18

(2)脱式计算。

254-120÷15199-69+31(55-26)×17

615÷(24+17)22×(71-58)203-(43-29)

组合图形面积的练习 优秀教案推荐


教学内容:组合图形面积的练习(教材第94、95页练习十八第3——8题)

教学目的:

1、使学生进一步巩固组合图形面积的计算方法;

2、利用所学知识解决生活中的实际问题。

教学重点:应用知识解决生活中有关组合图形面积的问题。

教学难点:

教学过程:

一、基本练习

1、复习

(1)回忆长方形、正方形、平行四边形、三角形、梯形的面积计算公式。

(2)看图说说下列图形是由哪些基本图形组成的。

二、指导练习

1、练习十八第3题

让学生独立审题,说一说该如何计算它实际占地面积。

学生讨论完后独立独立解答,集体核对。

2、练习十八第5题。

让学生看题和图,问:图是何意?

提醒学生这是一个组合图形的分解图。对理解有困难的学生,可实际操作一下让学生理解。

学生解答,集体核对。

3、练习十第7题。

学生独立完成后集体订正。

4、补充练习:学校要油漆40扇教室的门。(门形状如图,单位分米)需要油漆的面积一共是多少?如果油漆每平方米需要花费8元,那么学校共要花费多少元?

(1)让学生审题,理解题意。

(2)做此题应该注意什么?

强调油漆门是双面的。

(3)独立解答,核对时说一说自己是怎样算的?

三、延伸拓展

1、练习十八第8题。

(1)学生独立审题后小组讨论,如何计算草地、红花、黄花的面积。

(2)讨论完后试着算一算。

(3)汇报交流。

根据长方形的长与宽,可以求出它的面积。18×12=216(m2)

红花、黄花和绿草的种植面积,可以根据它们各自占长方形面积的几分之几来计算。

绿草的面积占长方形面积的1/2,所以绿草种植面积是216÷2=108(m2)。

红花和黄花的面积各占长方形面积的1/4,所以红花和黄花的种植面积各是216÷4=54(m2)。

四、全课小结:说一说今天这节课的最大收获是什么?

五、课堂作业:练习十第4、6题,第8题的设计图。

板书设计:

课后反思:

没有扎实的根基,何以建设高楼大厦?因此基本图形面积计算公式的复习必不可少。在此环节应特别关注学困生。他们常将长方形、正方形的周长和面积公式混淆,三角形、梯形公式忘记除以2。

有了昨天的前车之鉴,今天我首先利用练习题规范了作业格式,并真诚地向学生道歉,说明这样书写的原因。孩子们真是宽宏大量,不仅原谅了我昨天教学中的失误,还很快就掌握了规范的格式要求。

今天除第8题,其余各题我只需“指到为止”(即提问“求这个组合图形的面积也就是求什么?”)学生便可按格式正确完成,不仅质量高,而且效率高,真令我欣慰。

多边形面积的计算优秀模板


教学内容:课本p12~13例1~3及相关的试一试和练一练教学目标:1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。教学重点:理解并掌握平行四边形的面积公式教学难点:理解平行四边形面积公式的推导过程教学过程:一、复习导入:1、说出学过的平面图形,哪些图形的面积你会求?二、探究新知:1、教学例1:(1)出示例1中的第1组图要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较。(2)出示例1中的第2组图要求:还可以怎样比较两个图形面积的大小?(转化的方法)(3)揭示课题:师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)2、教学例2:(1)出示一个平行四边形,你能想办法把这个平行四边形转化成学过的图形吗?(2)学生操作,教师巡视指导。(3)学生交流操作情况(4)教室用课件或教具进行演示并小结。师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。(5)小组讨论:转化后的图形和原图有什么联系?①转化后长方形的面积与原平行四边形面积相等吗?②长方形的长与平行四边形的底有什么关系?③长方形的宽与平行四边形的高有什么关系?(6)学生总结,形成下面的板书:3、教学例3:(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。转化后的长方形平行四边形长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)(2)学生操作,反馈交流。(3)用字母表示面公式:s=ah(板书)三、巩固练习:1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。2、指导完成练一练:强调底和高的对应关系。四、总结:

本文网址:http://m.jk251.com/jiaoan/17649.html

相关文章
最新更新

热门标签