对于《圆锥的体积》这一节教学实录课我感受颇深,尤其是实验这一环节,使我更深刻地认识到《数学课程标准》指出的有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式的重要性。动手操作活动能很好地使大脑处于积极的思维状态,有利于思维的发展,培养学生良好的思维品质。教师首先给每个小组配有圆柱和圆锥圆器以及一些沙子,有的组圆柱和圆锥等底等高,有的组等高不等底,有的组等底不等高,还有的组不等高也不等底
师:你想用什么方法推导圆锥的体积?
生1:我们用圆柱体切割的方法推。
生2:用圆柱体容器和圆锥体容器推。
教师这时让学生通过实验的方法来推。
师:实验时请大家搞清两点:1.圆柱和圆锥容器底面积和高有怎样的关系?2.圆锥的体积和圆柱的体积之间有怎样的关系?
学生实验后每小组选两个代表到讲台前。
a组一生实验时,另一生做讲解员讲解,发现圆锥和圆柱等底等高时,圆锥的体积是圆柱的三分之一。
b组只拿容器不演示,发现圆锥和圆柱等底但不等高,圆锥体积是圆柱的六分之一。
c组同样只拿着容器直接汇报演示结果。
教师及时将六个组实验结果列表放在投影上,引导学生分析思考:圆锥和圆柱的体积究竟有怎样的关系呢?
结论的不确定,让学生产生了极大的兴趣,这时有的学生发现有三组结论是一致的,即当圆锥和圆柱等底等高时,圆锥的体积是圆柱体积的三分之一。这时教师并没有急切地给出结论,而是又进一步的追问:为什么这些圆锥和圆柱的形状都不相同而体积之间都有相同的关系呢?这样的追问,让学生进步明白做实验的圆锥和圆柱必须等底等高,这时教师再重新分配容器,每组实验的容器都是等底等高的,再次让学生实验。案例中教师在课堂上让学生反思不同的操作结果,进而再次操作,自主发现问题、提出问题、分析问题、解决问题。学生不仅切实体验了知识形成的过程,而且,思维得到了有效的提升,充分发展了思维能力和实践能力。
通过这样的教学活动,我们看到,课堂上通过学生的猜想、操作、观察、比较,让他们感受到了数学思考过程的条理性,提升了思维的价值,发展了有效的思维方式。
本节课上,我觉得也有些地方需要进一步改进,例如,在巩固练习这一环节上,练习要有梯度,这节课上一开始练习的几道题,无论是口答题还是笔答题都是已知圆锥的底面积和高,求圆锥的体积,这样的题目一是机械重复,二是不能培养学生运用知识的应用能力。我想如果把开始讲圆锥特征时用的圆锥实物拿出来,让学生思考,如果要想知道这个圆锥的体积,怎么办呢?这时让学生充分思考后再分组讨论交流,学生自然而然地会想到,求圆锥的体积除了要测量圆锥的底面积和高外,还可以测量圆锥的底面半径和高、底面直径和高、底面周长和高。
总之,在动手操作活动的学习中,教师要对学生进行适时的引导,学生才能体验到数学活动充满着探索性和挑战性,感受到数学思考的条理性和数学结论的确定性。
思考一:学生预习后教师怎么教
预习后,学生已经知道圆锥的体积公式,有了这个公式,教师如果什么都不讲,学生或许也能照着公式去解决问题。只是学生对公式是怎样推导来的,为什么要乘1/3,不一定理解。出于这样的学情,我把教材的思路变为:是什么——为什么——有什么用,这样三个流程。首先说说圆锥的体积公式是什么?然后用实验来验证它是怎样推导来的?最后用这个公式解决哪些问题?
思考二:怎样发挥小组合作的价值
合作学习的价值可以体现于同伴间的优劣互助,体现于分工合作带来的高效,也体现于智慧的相互碰撞。本节课的实验研究,需要向学生提出要求:1号拿圆锥,2号倒水,3号观察圆柱,4号记录实验单。在这样的分工下,学生可以比较顺利的完成实验。
思考三:如何有效发挥教师的主导作用,让操作活动更加具有价值。
教师的活动设计决定了教学效果。教师设计活动时要让学生真正“经历”了知识形成的过程,而不是仅仅停留在简单的的模仿操作,充当操作工的角色。本节课的难点之一就是让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件。为了有效突破这个难点,教师可以先让学生自主用高和底不同情况的圆柱和圆锥进行操作活动,在汇报交流中可能会出现不同的结论(如果没有教师可以唱反调,示范一次,引导学生深度思考),学生此时引发争论。通过让学生反思不同的操作结果,让学生发现问题、提出问题、分析问题、解决问题,使学生不仅“经历”了知识形成的过程,获得新知,同时学生的探索精神和实践能力得到了充分发展
思考四:如何把学生的思维引向深处
数学是思维的体操,学生思维的宽度和深度,需要教师去培养,去训练。本节课上的“等底等高的圆锥体积是圆柱体积的1/3”,看似简单的一个结论,其实其中隐藏着很多学问,由此可以联想到下面的结论:等底等高的圆柱体积是圆锥体积的3倍,把圆柱削成圆锥,削去部分的体积是圆柱体积的2/3,是圆锥体积的2倍。圆锥体积比与它等底等高的圆柱体积少。圆柱和圆锥等积等底时,圆锥的高是圆柱的3倍。这么多知识点,需要教师在课前精心准备和预设,教师只有有意识地去引导,去启发,学生的思维才会走向深处。
思考五:学生在做本节课的练习时,往往容易发生两个方面的错误
一是在计算圆锥的体积时,漏乘1
/
3,;二是错误的判断“圆锥的体积是圆柱的1
/
3”。为什么学生经历了“类比猜想—验证说明”的过程,理解了圆锥体积的计算方法,在做题时还是犯错。这仅仅归结于学生身上吗?我想在教研课,或者是同课异构,或者是小型课题的研究时,教师需要进行深入的探索和研究。
【教学内容】p33,例5练一练,练习七4-9【教学目的】使学生进一步掌握圆柱体积的计算方法,并能运用这个方法计算圆柱体容器的容积。【教学重点、难点】掌握方法,正确计算。【教学过程】一、复习。1、说出圆柱体体积的计算公式。2、计算下列各圆柱的体积。①底面积6平方厘米,高4厘米。②底面半径10厘米,高20厘米。③底面直径和高都是4分米。④底面周长6.28米,高2米。二、新课。1、揭示课题,圆柱体的容积。①说明圆柱体容积的意义。②用什么方法计算圆柱体的容积呢?(用计算圆柱体体积的方法来计算圆柱的容积,应测量圆柱容器里面的有关部位的长度)2、教学例5。⑴出示例5,指名读题。⑵讨论:①题目里要我们计算的是什么?用什么方法计算?②题目里告诉我们哪些条件?是否符合容积的要求?⑶学生试做,阅读课本。⑷集体评讲。①列式是否正确。②书写是否规范。③单位名称是否统一。④取近似值是否符合要求?三、巩固练习。1、“练一练”2、一个圆柱的体积是90平方厘米,底面积是15平方厘米,这个圆柱的高是多少?3、一个底面直径为20厘米,高为1米的圆木。①如果沿着它的底面直径割开成两个同样的半圆柱,表面积增加()平方厘米。②如果把它截成三个小圆柱体,表面积增加()平方厘米。③如果把它的底面分成若干等份,然后沿高切开拼成一个近似的长方体,表面积增加()平方厘米。四、总结、质疑。这节课里我们学到了哪些知识?根据学生回答教师总结。五、作业:练习七5、6、9。
圆锥的认识
教学内容:教科书p23-26的内容,p24“做一做”,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3、培养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心o)
(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
5、虚拟的圆锥
(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?
(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。
三、课堂练习
1、做第24页“做一做”的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
教学目标:
1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。
2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。
教学重、难点:
灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。
教学过程:
一、开门见山、温固引新。
提问:还记得哪些与圆柱圆锥有联系的计算公式?
学生回答相联系的数学公式。
师:到底同学们掌握得怎样呢?老师想通过一个练习来检查同学们公式灵活运用的情况,愿意接受这次挑战吗?
1.抢答练习,请说出你的思考过程。
(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
(2)一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?
(3)一根圆柱形状的木料底面直径16厘米、高20厘米,沿着它的底面直径和高切成相等的两块,表面积增加多少平方厘米?
学生抢答,并说出自己的思考过程,教师板书。
2.解决数学问题:
(1)一个圆柱形油桶,高6.28分米,侧面展开得到一张正方形铁皮,求这个油桶的容积。
(2)有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)
(3)一个圆柱形容器,底面半径10厘米,容器内水深60厘米。现将一个底面半径为5厘米的圆锥铁块沉入水中,水面比原来上升2厘米。圆锥体铁块的高是多少厘米?
(4)一个圆柱的高是10厘米,如果高减少3厘米,那么表面积比原来减少94.2平方厘米,原来圆柱的表面积是多少平方厘米?
(5)一个圆柱形蓄水池的容积式31.4立方米,已知蓄水池的内直径是4米,它的深是多少米?如果在蓄水池的内壁和底面抹上水泥,抹水泥部分的面积是多少平方米?
(6)一个圆锥形沙堆的底面积是4.8平方米,高3米,将这堆沙装在一个底面积是3.6平方米的圆柱形沙坑里,能装多高?
(7)有两个底面积相等的圆柱,高的比是7:5,第一个圆柱的体积是175立方厘米,则第二个圆柱的体积是多少立方厘米?
学生独立思考并逐个练习,教师及时了解学生解答情况并讲评。
三、课堂总结。
通过今天这节课的学习,谁来说一说你有哪些收获?你还存有疑惑或问题吗?
预设目标:
使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,发展学生的空间观念。
教学过程:
教师:在这个单元里,我们学习了两种新的立体图形:圆柱、圆锥,知道了它们的特征、学会了如何求出它们的体积等知识。并学会运用这些知识解决一些简单的实际问题。
一、复习圆柱
1、圆柱的特征。
⑴圆柱有什么特点?⑵做第91页第1题的上半题。
2、圆柱的侧面积和表面积。
⑴教师:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)
圆柱的侧面积怎样计算?(底面的周长×高)
为什么要这样计算?(底面的周长=长方形的长,高=长方形的宽)
圆柱的表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
⑵做第91页第2题的第⑴、⑵小题,第3题上半题求圆柱表面积部分。
3、圆柱的体积。
⑴教师:圆柱的体积怎样计算?(底面积×高)计算的公式是怎样推导出来的?圆柱体的体积计算的字母公式是什么?(v=sh)
⑵做第91页第3题的上半题求圆柱体积部分。
二、复习圆锥
⑴圆锥有什么特点?
⑵做第91页第1题的下半题和第2题的第⑶小题。
2、圆锥的体积。
⑴教师问:怎样计算圆锥的体积?计算圆锥体积的字母公式是什么?
这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)。
⑵做第91页第3题的下半题。
三、课堂练习
1、做练习二十三的第1题、第2题。
学生独立做题,教师行间巡视,提醒学生看清题目后括号里的要求。
四、创意作业。
练习二十三的第3题。
长方体的体积
学案:
学习任务:
1、探索并掌握长方体、正方体的计算方法
2、能正确计算长方体正方体的体积。
学习难点:
怎样把求小正方体的个数的计算方法转化成长方体的体积的计算方法。
学习内容:
1、观察课本63页“想一想”中的图(上下为一组),想一想,长方体的体积可能与什么有关?分别用三句话概括这三组图说明了什么?(课前预习)
2、课本63页中“做一做”(小组完成)
想一想:怎样才能很快的得出小正方体的个数?
小组合作完成:怎样计算长方体的体积?动手做实验观察记录解释讨论得出结论表达陈述
3、汇总、补充、完善长方体的计算方法以及如何用字母来表示体积公式。(全班交流)
4、独立练习,完成课本64页试一试1题、2题。
本节课知识点:(应知应会,老师把握)
1、长、宽相等的时候,越高,体积越大。
2、长、高相等的时候,越宽,体积越大。
3、宽、高相等的时候,约长,体积越大。
4、长方体的体积=长×宽×高v=abh
5、正方体的体积=棱长×棱长×棱长v=aaa=a3
教案
课堂中展示交流过程:(三个模块)
1、心中有数,带着问题进课堂!
整理回顾自己的预习作业,记住自己有疑问的地方,准备在交流展示环节提问(1分钟)
2、展示自我,交流汇报同进步!
○1小组内交流预习中的收获和疑问。
○2展示组展示汇报预习学习情况,别的小组补充完善,提出疑问,由展示组优先解惑,有问题其他组补充,最后由组长作总结发言。
3、练习运用,独立完成我能行!
独立完成课本第4页练一练的1、2、3题,老师巡视,发现问题全班展示、点评。完成后按照1号检查6号、2号检查5号,3号检查4号的顺序进行组内批改及帮助,各组长督促检查完成情况。(6分钟)
备注
○1举手组员多的组优先发言。
○2发言时各组尽量观点不同,相同观点的可以补充别组不完善的地方。
○3若哪一组所有观点均与别组全部相同,则不用发言。
○4别组发言时,提倡提出有质疑的问题(有价值的问题),若对方无法解释或者解释不清,提出质疑的小组加双倍的分。
○5提倡有创意的想法。
○6只要发言的小组均加分,有创意想法的加双倍的分数。
教学内容:认识圆柱和圆锥
教学目标:
1.学生能在观察、操作过程中认识圆柱和圆锥的特征,知道圆柱和圆锥各部分的名称,认识圆柱的侧面及它的展开图。
2.进一步培养学生的空间观念,能正确判断出圆柱和圆锥。
教学重点:
理解掌握圆柱、圆锥的特征。
教学难点:
认识圆柱、圆锥特征,正确测量圆锥的高。
教学对策:
通过观察实验,认识并掌握圆柱和圆锥的特征,建立空间观念。
课前准备:
1、学生准备圆柱、圆锥形状的物体若干个。
2、学生按练习五第3题样做好小旗。
3、教师准备教学光盘、圆柱、圆锥体教具。
教学预设:
一、复习准备
1.师:你知道哪些立体图形?哪些立体图形我们已经重点研究过了?
2.今天开始我们要研究新的立体图形:圆柱,(板书:圆柱,出示图)
二、新授教学(一)认识圆柱
(一)初步感知圆柱
1.教师提问:现在找找请你们带来的东西中,哪些是圆柱?请把圆柱举起来。
2、举出学生带来的东西中不是圆柱的例子。
3.揭示实物图,出现圆柱几何图形。
教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。
(二)认识圆柱的面.。
1.分组活动,每人拿一个圆柱,摸一摸它的面。
2.互相交流,什么感觉.启发学生动手实验:
(1)用手平摸上下底,有什么特点。
(2)用笔画一画,上下底面积有什么特点。
(3)用双手摸侧面。
3.教师明确:
圆柱的上、下两个面叫做底面.它们是两个完全相同的两个圆。
圆柱的侧面,是一个曲面。
(三)圆柱的高。
出示高、低不同的两个圆柱。
用直尺和三角板演示圆柱的高。
使学生明确:圆柱两个底面之间的距离叫做高。
三、新授教学(二)认识圆锥
1、在刚才的图片中,还看到其他几种物体,如房屋屋顶、蛋筒等,这些物体是什么形状的?揭示:圆锥(板书,并出示图形)
2、生活中还见过哪些圆锥形的物体?
3、根据教材中的物体插图,抽象出立体图。
4、利用课前做好的圆锥体及立体图,让学生观察、手摸,认识圆锥的特点。
5、组织交流,教师板书:圆锥,有一个顶点,底面是一个圆形,侧面一个曲面。
6、重点认识圆锥的高(图略)
(1)看图介绍圆锥的高。
(2)讨论:如何量出老师手中圆锥体的高?
(3)组织交流,指名测量。
四、巩固练习
1、练一练:学生独立思考,组织交流,说明判断方法。
2、练习五第2题:先从圆柱的正面、侧面、上面进行观察,再从圆锥的正面、侧面、上面进行观察。然后根据第2题上观察到的图进行连线。
3、练习五第3题:先想象各种小旗快速旋转后的形状,将结果告诉同桌。再旋转验证。
4、练习五第4题:按要求进行操作,并计算,从中你发现了什么?
五、总结
1、通过今天的学习,你有什么收获?
2、自己动手做一个圆柱体。
教学目标:
1、让学生运用等积变换的方法,以及联系某种物质的比重,通过测量相应物体的质量,计算其体积的方法,来测量和计算不规则物体的体积。
2、培养学生的动手实践能力,提高学生综合运用数学知识和方法解决实际问题的水平。
教学重点、难点:弄清测量的步骤,注意测量过程中的细节。体会测量中发现的规律的实质含义。
教学准备:
(1)圆柱体的玻璃容器1个,土豆1个,大小不同的铁块3块,天平1架。
(2)学生合理分组,明确分工,强调合作。
教学过程:
一、基本练习:
1、一个长20厘米、宽12厘米,高30厘米的长方体铁块和一个棱长为20厘米的正方体铁块熔铸成一个底面半径为30厘米的圆柱体,圆柱体的高是多少厘米?
2、将3个不规则的铁块熔铸成一个底面直径为20厘米、高为30厘米的圆柱体,那么这3个不规则铁块的体积一共有多少立方厘米?
二、动手测量
(一)测量土豆的体积
1、提问:怎样测量一个土豆的体积?
2、组织交流测量方法与测量步骤。
(1)准备好相应器材。
(2)测量圆柱体容器底面直径,计算底面积。
(3)在圆柱体容器中倒入适量的水,量出水的高度。
(4)把土豆完全浸入容器中的水里,量出水面上升后的高度。
(5)计算水的体积。
3、按要求测量土豆体积。
小组合作完成。
4、小组交流汇报结果。
三、测量铁块的体积
1、先让学生用测量土豆的方法测量前两个不规则铁块的体积。
2、在天平上称出它们的质量。
3、引导学生把数据填在书上第37页上的表格中,并计算出比值。
四、应用知识,求出第三块铁块的体积。
1、提问:通过测量和计算,你发现了什么?
2、组织交流:用同一种材料,质量与体积的比的比值是一定的。
3、根据上面2块铁块的体积与质量的体积比,你能计算出第3块铁块的体积吗?
你是怎样想的?
五、介绍“你知道吗”
本文网址://m.jk251.com/jiaoan/19895.html
下一篇:中班地震安全教学方案