导航栏

×
范文大全 > 小学教案

“整数除以分数”教学对比探究 教案精选篇

时间:2022-03-22 分数除以整数教案 分数除以整数的课件

【教学内容】课标实验教科书《数学》(苏教版)第十一册。

方法一

师:先填空,再说出自己的想法。

生1:分数除以整数,等于分数乘整数的倒数。

生2:可以依据商不变的性质把除数变成“1”,就是被除数和除数都乘上除数的倒数。

生3:我也可以把除数是分数的除法也转化为除数为“1”。

师:谁能把这个除法算式计算出来?

师:同学们找到了最简便的计算方法,谁能用一句话来概括呢?

生:整数除以分数(0除外),等于整数乘这个分数的倒数。

方法二

在简单复习“分数除以整数”计算的基础上,回忆“分数除以整数(0除外),等于分数乘这个整数的倒数”。

生2:我觉得这种方法有局限性,当除数不能化成有限小数时,用这种方法就不能计算出正确的结果。

生3:因为分数除以整数(0除外),等于分数乘这个整数的倒数。我想整数除以分数也可以用整数乘分数的倒师:这种计算方法究竟如何呢?下面大家一起来探究“整数除以分数”的计算法则。

(教师引导学生根据题意画出下面的线段图)

师:根据上面的线段图,你能推算出1小时能行多少千米吗?

师:从上面可以看出,整数除以分数只要怎样计算就可以了?

生:(异口同声)整数除以分数,等于整数乘这个分数的倒数。

……

【反思】

方法一突破了书本的束缚,以“商不变性质”为基础推导法则,为学生学习作了必要的知识铺垫,推导出计算法则“耗时短,见效快”。但学生是在教师事先设计好的轨迹中学习数学,失去了自身学习的能动性和创造性,同时这种教法除了关注计算的技巧之外,明显地缺少了对学生后续学习发展的数学思考。

方法二鼓励学生合理运用多种思维方式去思考解决问题的方法,重视学生的个性化建构过程。表现为三个层次的思维训练。第一层次是直觉思维形式。即由“因为分数除以整数(0除外),等于分数乘这个整数的倒数”。我猜想整数除以分数也只要用整数乘分数的倒数。第二层次是形象思维形式。由教师引导学生根据题意画出线段图,从而使学生借助直观图形展开思维,培养了学生的形象思维能力。第三层次是逻辑思维形式。最后由一名学生联想已学过的“商不变的性质”推导出法则。这是一种逻辑思维形式,是学生利用旧知探索并“创造”新知的表现,这种解释深刻而富有创造性。一方面,很简捷地验证了猜想是正确的;另一方面,学生新旧知识的沟通、应用能力也是一次很好的展现。整个教学过程的三个阶段,体现了三种思维形式在知识建构过程中的灵活运用,有利于因材施教、发展个性,培养学生的思维能力。

比较两种教法,有以下启示:要“探究法则”,而不要单纯“传授法则”,突出数学学习的过程性;要加强数学思维能力的培养,而不要单纯进行法则技能训练,以突出数学学习过程中的发展性;要引导学生欣赏自己,而不要单纯羡慕老师,以突出数学学习过程中的价值观。(作者单位:江苏省丹阳市华南实验学校)

Jk251.com相关文章推荐

整数除以分数的教学片断与反思 教案精选篇


出示这样一组信息:

出示:一只小鸟小时飞行12千米。1小时行多少千米?

你会用线段图表示条件吗?(师生一起画出线段图)

求小鸟1小时飞行多少千米,算式怎么列?

这是整数除以分数(板书课题)

1、12÷怎样计算呢?

学生可能有以下三种方法:

(1)12÷=12÷0.2(这是转化成整数除以小数进行计算。)

你还能否根据线段图发现不同的解法呢?

(2)12×5(这是根据线段图理解的。)

为什么乘5?能在图中解释一下吗?

(3)12÷1×5(说出这种做法的同学是班上一个比较认真的孩子,看的出她很动脑子,但是解释的并不是很清楚。)

(4)(12×5)÷(×5)=60(这是根据商不变的规律进行计算的。)

师:从计算上面来看似乎第二种算法最简单!

这时有学生举手说:我认为整数除以分数,可以除以他的倒数!(我看的出来他在课前已经看过书了。)

师:对,你真聪明,大家从刚才的第二种方法也能看出来,12÷=12×5,那这个结论到底对不对呢?我们一起在来看例题。

教学反思:

课堂的一开始,我并没有直接从书本例题开始讨论,而是从一个除数是几分之一的简单例子推想出结论,在让孩子们来考虑是否适用于所有的例子呢。这样的安排,让学生们能真正理解整数除以分数的算理,让学生们的思维有一个缓冲阶段,这样更有利于学生思维的拓展,并没有把学生的思维束缚在整数除以分数的一般计算方法中。以这样的教学,我相信肯定会给学生的发展带来更大的空间。

上册分数除以整数导学设计 优秀教案推荐


《分数除以整数》是苏教版小学数学六年级上册第43—44页内容及相应的练习。

二.教学目标:

1、使学生理解分数除法的意义与整数除法的意义相同。

2、使学生在理解算理的基础上掌握分数除以整数的计算方法,并能正确的进行计算!

3、培养学生分析能力,知识的迁移能力和语言表达能力,使学生的抽象思维能力得到发展。

三.教学重点:

理解分数除法的意义。

四.教学难点:

正确地归纳出分数除以整数的计算方法,并能准确地计算。

五.教具准备:

课件、练习纸多张。

六.教材分析:

这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先将例1进行修改,出示一组整数乘除法的复习题,复习整数除法的意义,然后改编成一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过折纸帮助学生理解题意,引导学生通过用两种不同折纸方法得出两种不同计算方法,最后自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算÷3,发现问题,最后归纳出分数除以整数的计算方法。提高学生的解题能力,发展学生的创新思维能力。

七.教学过程:

(一)、创设情境,导入新课。

1、师:星期天钱老师家里来了小客人,钱老师打算用果汁来招待他们,大家请看。

果汁有4升,平均分给2个小朋友喝,每人喝多少升?(板书4÷2=2)说含义?

果汁有1升,平均分给2个小朋友喝,每人喝多少升?(板书1÷2=0.5)

果汁有4/5升,平均分给2个小朋友喝,每人喝多少升?(板书4/5÷2=?)

2、4/5÷2表示什么意思?(将4/5平均分成2份,每份是多少)

3、师:在数学上,把一个事物平均分成几份,我们都可以用除法来计算。

今天我们一起来学习分数除法。

(二)、小组合作,学习新知。

1、遇到新问题,我们要学会转化到已有的知识来解决。你能尝试自己计算:4/5÷2吗?

2、教师巡视,学生独立完成。

3、全班交流:

0.8÷2=0.4

4/5÷2=(4÷2)/5=2/54÷2表示什么意思?

4/5÷2=4/5×1/2=2/51/2是什么意思?

4、师:同学们想到了多种方法来解决,可以用分子除以2,也可以把除法转化为乘法来计算。

5、将果汁有4/5升,平均分给3个小朋友喝,每人喝多少升?

6、请同学们独立完成。

7、交流,你是用什么方法来完成的。

8、4/5÷3=4/5×1/3=4/15(为什么不用第一种方法?第一种方法什么时候用?)

9、为什么乘1/3,1/3表示什么意思?(平均分给3个人,每人分得4/5的1/3。)

10、分数除以整数,我们可以怎样计算?

11、小组讨论,全班交流。

12、分数除以整数,等于分数乘这个整数的倒数。

(三)、联系巩固。

1、“练一练1”。

学生读题,先画一画,在交流你怎么想的?

2、“练一练2”。

学生独立完成,说说你怎么算的。

3、“练一练3”。

请学生板演。全班交流评议。

4、判断题。

5、应用题。

学生读题,对完成,交流评议。

(四)、全课小结。

1、通过这节课的学习,你有什么收获?

(五)、作业布置。

分数乘整数优秀模板


第二单元分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、分数乘法计算法则的推导。

1、分数乘法

(1)分数乘整数教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。1、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。教学过程:一、复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?9个11是多少?8个6是多少?

(2)计算:

++=++=

2.引出课题。++这题我们还可以怎么计算?今天我们就来学习分数乘法。二、新授1、利用++教学分数乘法。(1)这道加法算式中,加数各是多少?(都是)(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,×3)(3)++=9,那么++=×3,所以×3=____________=9。同学们想想看,×3=9计算过程是怎样的?谁能把它补充完整。2、出示例1,画出线段图,学生独立列式解答。?

(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。4、练习:练习完成“做一做”第2题。5、教学例2(1)出示×6,学生独立计算。(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?(3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)三、作业练习二第1、2、4题。

题:分数整数相乘 优秀教案推荐


课题:分数和整数相乘(一)

教学内容

教科书p3~4页的例1,完成第5页"练一练"的题目和练习一的第1~8题.

教学目标

1,使学生掌握分数和整数相乘的意义和计算法则,知道计算时能约分的先约分再相乘比较简便.

2,在知识的探索与小结中,进一步培养学生的类推,比较和概括等思维能力和学生的计算能力.

3,在解题中,培养学生良好的作业习惯.

教学重点

在知识的探索中,让学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够正确的进行分数乘整数的计算.

教学难点

让学生能够正确,熟练的进行分数乘整数的计算.

教学准备

卡片等.

教学环节

过程目标

教师活动

学生活动

反思

复习铺垫

通过分类与交流,让学生发现加数相同的分数加法与加数相同的整数加法一样,可以用乘法来表示.使学生初步认识分数乘整数的意义.

1,根据特征分一分:

2/3+3/5=2/9+2/9=

1/4+1/4+1/4=3/8+1/8=

7+9=3+3+3+3+3+3=

等8题.

2,计算各题.

3,引导学生观察加数相同的加法,从3+3+3+3+3+3这题出发,引导学生思考加数相同的分数加法题也可以用乘法表示.

1,学生观察题目,交流引出根据加数相同与否分为二类.

2,独立算算后交流口答.

3,思考交流,用乘法表示加数相同的分数加法.

探究新知

在列式交流中,让学生理解分数乘法的意义与整数乘法的意义相同.在方法的交流中,并能结合例子说说意义.提高学生的类推能力与归纳能力.

1,出示题目:(例题)

a,读题,说说题意.

b,让学生尝试列式解答.

c,组织交流列式情况.

d,引出分数乘法的意义.

e,引导说说分数乘整数意义.

2,分数乘整数式题的计算.

a,让学生尝试计算.

b,引导归纳小结分数乘整数的计算方法.

c,引导学生为了计算简便,能约分的要先约分,然后再乘.

a,理解题目意思.

b,根据理解列出算式.

c,交流说说列出的算式与表示的意思.

d,说说分数乘法的意义.

e,全班交流后举列说说意义.

a,尝试计算后交流说说计算时的想法.

b,交流说说计算方法.

c,学习与理解.

知识运用

通过练习,让学生能够正解的运

一,填一填,说一说:

完成p5练一练的第1题,

p7第1,2题.

学生根据要求填写,交流结果,并说说表示的意义.

教学环节

过程目标

教师活动

学生活动

反思

知识运用

用知识解答分数乘整数的式题,提高学生的知识运用能力.

二,算一算:

完成p5练一练的第3,2题.

三,应用题:

完成p7的第5,6题.

独立完成题目,口答交流,举例说说计算过程.

读题分析后列式解答与交流.

课堂小结

通过今天的学习,你有什么收获

重点说说意义与计算方法.

课堂作业

完成p7的第3,4,7,8题.

本文网址://m.jk251.com/jiaoan/20135.html

相关文章
最新更新

热门标签