课题:列方程解应用题
执教人:上海市兴陇中学李炯
教学目标:利用代数与几何图形相结合的思想列方程解应用题;并创设情景解决生活中的数学问题。
重点难点:知识的综合灵活应用
情感目标:激发学生创新思维,培养学生解决问题的能力。
教学过程:
(一)复习:
列方程解应用题的解题步骤。
(二)正课:
本节课我们将研究一下如何用列方程的思想方法解决与几何知识有关的应用题。
例1:在宽为20米长为30米的矩形地面上,修筑同样的两条互相垂直的道路,余下部分作耕地,使耕地面积为375平方米,问道路宽为多少米?
分析:如图1余下部分的面积375M2是
等量关系。但被分为四块求面积有困难。
不妨把道路向两边移,这样余下部分为一
个矩形,求面积就比较容易。
解:略。
练习:《考纲》
例2:有一块矩形耕地,相邻两边的长度如图所示,要在这块地上分别挖如图的4条横向水渠和2条纵向水渠,且使水渠的宽相等,余下的可耕地面积为9600平方米。那么水渠应挖多宽?
例3:在矩形ABCD中,放入8个形状大小相同的小长方形,求阴影部分面积。
练习:《考纲》P85
思考:在一个50米长30米宽的矩形空地上要设计改造成为花坛,并要使花坛所要的面积为荒地面积的一半,诗给出你的设计方案。
小结:我们常用列方程的思想来处理几何图形的计算问题,这种解法也是数形结合思想方法的一种应用。
课题:列方程解应用题
执教人:上海市兴陇中学李炯
教学目标:利用代数与几何图形相结合的思想列方程解应用题;并创设情景解决生活中的数学问题。
重点难点:知识的综合灵活应用
情感目标:激发学生创新思维,培养学生解决问题的能力。
教学过程:
(一)复习:
列方程解应用题的解题步骤。
(二)正课:
本节课我们将研究一下如何用列方程的思想方法解决与几何知识有关的应用题。
例1:在宽为20米长为30米的矩形地面上,修筑同样的两条互相垂直的道路,余下部分作耕地,使耕地面积为375平方米,问道路宽为多少米?
分析:如图1余下部分的面积375M2是
等量关系。但被分为四块求面积有困难。
不妨把道路向两边移,这样余下部分为一
个矩形,求面积就比较容易。
解:略。
练习:《考纲》
例2:有一块矩形耕地,相邻两边的长度如图所示,要在这块地上分别挖如图的4条横向水渠和2条纵向水渠,且使水渠的宽相等,余下的可耕地面积为9600平方米。那么水渠应挖多宽?
例3:在矩形ABCD中,放入8个形状大小相同的小长方形,求阴影部分面积。
练习:《考纲》P85
思考:在一个50米长30米宽的矩形空地上要设计改造成为花坛,并要使花坛所要的面积为荒地面积的一半,诗给出你的设计方案。
小结:我们常用列方程的思想来处理几何图形的计算问题,这种解法也是数形结合思想方法的一种应用。
课题:列方程解应用题
执教人:上海市兴陇中学李炯
教学目标:利用代数与几何图形相结合的思想列方程解应用题;并创设情景解决生活中的数学问题。
重点难点:知识的综合灵活应用
情感目标:激发学生创新思维,培养学生解决问题的能力。
教学过程:
(一)复习:
列方程解应用题的解题步骤。
(二)正课:
本节课我们将研究一下如何用列方程的思想方法解决与几何知识有关的应用题。
例1:在宽为20米长为30米的矩形地面上,修筑同样的两条互相垂直的道路,余下部分作耕地,使耕地面积为375平方米,问道路宽为多少米?
分析:如图1余下部分的面积375M2是
等量关系。但被分为四块求面积有困难。
不妨把道路向两边移,这样余下部分为一
个矩形,求面积就比较容易。
解:略。
练习:《考纲》
例2:有一块矩形耕地,相邻两边的长度如图所示,要在这块地上分别挖如图的4条横向水渠和2条纵向水渠,且使水渠的宽相等,余下的可耕地面积为9600平方米。那么水渠应挖多宽?
例3:在矩形ABCD中,放入8个形状大小相同的小长方形,求阴影部分面积。
练习:《考纲》P85
思考:在一个50米长30米宽的矩形空地上要设计改造成为花坛,并要使花坛所要的面积为荒地面积的一半,诗给出你的设计方案。
小结:我们常用列方程的思想来处理几何图形的计算问题,这种解法也是数形结合思想方法的一种应用。
一、素质教育目标
(一)知识教学点
1.要求学生学会用移项解方程的方法.
2.使学生掌握移项变号的基本原则.
(二)能力训练点
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.
(三)德育渗透点
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.
(四)美育渗透点
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.
二、学法引导
1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.
2.学生学法:练习→移项法制→练习
三、重点、难点、疑点及解决办法
1.重点:移项法则的掌握.
2.难点:移项法解一元一次方程的步骤.
3.疑点:移项变号的掌握.
四、课时安排
3课时
五、教具学具准备
投影仪或电脑、自制胶片、复合胶片.
六、师生互动活动设计
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.
(出示投影1)
利用等式的性质解方程
(1);(2);
解:方程的两边都加7,解:方程的两边都减去,
得,得,
即.合并同类项得.
【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.
提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?
(二)探索新知,讲授新课
投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.
(出示投影2)
师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?
2.改变的项有什么变化?
学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.
师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号.
【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.
师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
(三)尝试反馈,巩固练习
师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.
学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.
【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.
对比练习:(出示投影3)
解方程:(1);(2);
(3);(4).
学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.
师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)
【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.
巩固练习:(出示投影4)
通过移项解下列方程,并写出检验.
(1);(2);
(3);(4).
【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.
(四)变式训练,培养能力
(出示投影5)
口答:
1.下面的移项对不对?如果不对,错在哪里?应怎样改正?
(1)从,得到;
(2)从,得到;
(3)从,得到;
2.小明在解方程时,是这样写的解题过程:;
(1)小明这样写对不对?为什么?
(2)应该怎样写?
【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.
(出示投影6)
用移项解方程:
(1);(2);
(3);(4).
【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.
学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.
(出示投影7)
解下列方程:
(1);(2);(3);
(4);(5);(6).
【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识.
(五)归纳小结
师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.
八、随堂练习
1.判断下列移项是否正确
(1)从得()
(2)从得()
(3)从得()
(4)从得()
2.选择题
(1)对于方程,移项正确的是()
A.B.
C.D.
(2)对于方程移项正确的是()
A.B.
C.D.
3.用移项法解方程,并写出检验
(1);
(2);
(3).
九、布置作业
课本第205页A组1.(1)(3)(5).
十、板书设计
随堂练习答案
1.×××√
2.DC
3.略
作业答案
(5)
解:移项得
合并同类项得
检验:略
探究活动
运动与学习成绩
班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?
参考答案:
全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.
参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.
一、素质教育目标
(一)知识教学点
1.要求学生学会用移项解方程的方法.
2.使学生掌握移项变号的基本原则.
(二)能力训练点
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.
(三)德育渗透点
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.
(四)美育渗透点
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.
二、学法引导
1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.
2.学生学法:练习→移项法制→练习
三、重点、难点、疑点及解决办法
1.重点:移项法则的掌握.
2.难点:移项法解一元一次方程的步骤.
3.疑点:移项变号的掌握.
四、课时安排
3课时
五、教具学具准备
投影仪或电脑、自制胶片、复合胶片.
六、师生互动活动设计
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.
(出示投影1)
利用等式的性质解方程
(1);(2);
解:方程的两边都加7,解:方程的两边都减去,
得,得,
即.合并同类项得.
【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.
提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?
(二)探索新知,讲授新课
投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.
(出示投影2)
师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?
2.改变的项有什么变化?
学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.
师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号.
【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.
师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
(三)尝试反馈,巩固练习
师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.
学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.
【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.
对比练习:(出示投影3)
解方程:(1);(2);
(3);(4).
学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.
师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)
【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.
巩固练习:(出示投影4)
通过移项解下列方程,并写出检验.
(1);(2);
(3);(4).
【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.
(四)变式训练,培养能力
(出示投影5)
口答:
1.下面的移项对不对?如果不对,错在哪里?应怎样改正?
(1)从,得到;
(2)从,得到;
(3)从,得到;
2.小明在解方程时,是这样写的解题过程:;
(1)小明这样写对不对?为什么?
(2)应该怎样写?
【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.
(出示投影6)
用移项解方程:
(1);(2);
(3);(4).
【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.
学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.
(出示投影7)
解下列方程:
(1);(2);(3);
(4);(5);(6).
【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识.
(五)归纳小结
师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.
八、随堂练习
1.判断下列移项是否正确
(1)从得()
(2)从得()
(3)从得()
(4)从得()
2.选择题
(1)对于方程,移项正确的是()
A.B.
C.D.
(2)对于方程移项正确的是()
A.B.
C.D.
3.用移项法解方程,并写出检验
(1);
(2);
(3).
九、布置作业
课本第205页A组1.(1)(3)(5).
十、板书设计
随堂练习答案
1.×××√
2.DC
3.略
作业答案
(5)
解:移项得
合并同类项得
检验:略
探究活动
运动与学习成绩
班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?
参考答案:
全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.
参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.
教学目标:1.能熟练地用代入消元法解简单的二元一次方程组2.从解方程的过程中体会转化的思想方法教学重点:用代入消元法解二元一次方程组教学难点:用含有一个未知数的代数式表示另一个未知数教学过程:一、情境创设根据篮球比赛规则;赢一场得2分,平一场得1分,在某次中学篮球联赛中,某球队赛了12场,赢了x场,输了y场,共各20分.可以得出方程组:x+y=122x+y=20(学生思考,列出方程)二、新课讲授如何解上面的二元一次方程组呢?x+y=12①2x+y=20②(学生主动探索,尝试,体会消元的方法)解:由①得:y=12-x③将③代入②得:2x+12x-x=20解这个二元一次方程,得x=8将x=8代入③,得y=4所以原方程组的解是x=8y=4注:①二元一次方程组的解是一对数值,而不是一个单纯的x值或y值.②算出结果后要做心算检验,以养成习惯问题:(引导思维拓展)①你是如何解方程组的?②每一步的依据是什么?③还有其它的方法吗?(能否通过消去x解方程?)代入消元法:将方程组的一个方程中的某个未知数据用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程转化为解一元一次方程,这种解方程组的方法,称为代入消元法,简称代入法.(学生归纳、总结、并理解)点评:用代入消元法解二元一次方程组方法不唯一,比如:上题中也可以用y来表示x,通过消去x来解方程.即:由①得:x=12-y……③,将③代入②得……即使用x来表示y,方法也不是唯一的,可以由①得y=12-x,也可以由②得y=20-2x……三、例题教学:解方程组x+3y=03x+2y=92(板书示范,学生思考回答)步骤1.用一个未知数表示另一个未知数;2.将表示后的未知数代入方程;3.解此方程4.求方程组的一对解.四、学生练习p1101、2、3(学生板演)五、拓展延伸1.解方程组3x=1-2y3x+4y=-7(整体代入法)2.已知x+y=k2x+3y=k六、课时小结:1.用代入法解二元一次方程组的步骤?2.任意一个二元一次方程都能用代入消元法解吗?举例说明.七、作业p1121、(1)(4)2、3、
教学设计示例
一、素质教育目标
(一)知识起学点
1.理解:等式的意义,并能举出有关等式的例子.
2.掌握:关于等式变形的两条性质,并能语言叙述.
3.应用:会用等式的两条性质将等式变形,并能对变形说明理由.
(二)能力训练点
通过等式的两条性质的教学,培养学生由等式走向新等式的解题思想,即为以后方程的同解变形打下基础.
(三)德育渗透点
从特殊到一般的思维方法.
(四)美育渗透点
等式的两条性质体现了数学的对称美.
二、学法引导
1.教学方法:采取引导发现法,创设合理的问题情境,激发学生思维的积极性,充分展现学生的主体作用.
2.学生学法:演示实验→等式性质→巩固练习.
三、重点、难点、疑点及解决办法
1.重点:等式概念的认识理解,等式性质的归纳.
2.难点:利用等式的两条性质变形等式.
3.疑点:(1)等式性质2中,关于除数不为零的理解.
(2)利用性质变形时,对“等式两边”的理解.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片、简单实物.
六、师生互动活动设计
师生共同做演示实验,得出等式性质,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(-)创设情境,复习导入
教师在上课开始时,给出如下的数学关系
(出示投影1)
;;
;;
;
师提出问题:观察上面式子表示了什么关系?由学生回答“相等关系”后引出等式的概念和等式的含义,分清等式的左边和右边.
教师和学生一起完成一个演示实验:
两只手中各拿4支粉笔,现在我们再分别从粉笔盒里拿出两支,放入相应手中,问两只手中粉笔个数的关系?如果我们将开始手中的粉笔各放回两支怎样呢?既扩大到原来的2倍,或缩小到原来的2倍,结果还是相等.
(二)探索新知,讲授新课
教师引导学生,把上面实验抽象为一个数学问题.
即:4=4.
提出问题:由上面两组等式变形,我们可以得出关于等式变形什么结论?把上面式中2,改3或-5行吗?
学生活动:让全体学生参与讨论,启发学生怎样用精炼的语言叙述,或分组推荐代表回答.
师总结等式的性质:
由前两式总结:1.等式的两边都加上(或减去)同一个数或同一个等整式,所得结果仍是等式.
由后两式总结:2.等式的两边都乘以(或除以)同一个数(除数不能为零),所得结果仍是等式.
提出问题:①4=4两边都加上整式如:两边都加上结果还是等式吗?
②第二结论中所说除数可以是零吗?
学生活动:学生回答问题后,教师对上面结论加以补充说明.
教师归纳:以上两个规律,就是我们今天学习的“等式性质”
【教法说明】通过以上两条性质的总结,教师应强调以下四点:
①等式的性质1是加法和减法运算,等式的性质2是乘法或除法运算.
②等式的两边都参与运算,并且是同一种运算.
③加(或减)、乘以(或除以)的是同一个数.
④零不能做除数或分母.
(三)尝试反馈,巩固练习
【教法说明】由于这组题是例题的巩固,因此可以由学生讨论分组,以竞赛形式回答以增加课堂上的参与意识.
(出示投影2)
1.判断:已知等式,下列等式是否成立?
①;②;③;④.
2.若,请同学们根据等式性质编出三个等式并说出你的编写根据.
【教法说明】这组题是对等式性质的辨析,教学时应多让学生思考,并能说出依据.
(出示投影3)
1.从能不能得到呢?为什么?
2.从能不能得到呢?为什么?
3.从能不能得到呢?为什么?
4.从能不能得到呢?为什么?
学生活动:分组抢答.
【教法说明】从以上题目可知,根据等式的性质,从已知等式出发通过变形可得出新的等式.
(出示投影4)
例用适当的数或整式填空,使所得结果仍是等式
1.如果,那么;
2.如果,那么;
3.如果,那么.
【教法说明】分析:
1题从已知的一边入手,怎样变形就得到呢?(原等式两边都减去5)根据___________________________________________?
2题观察等式的右边怎样由变形成5(两边加上),即原来两边都加上,根据等式性质1.
3题观察等式左边怎样由变形为,即等式两边都除以0.2,根据等式性质2.
巩固练习:(出示投影5)
练习:用适当数填空,并且说出根据等式的哪条性质及怎样变形的?
1.如果,那么;
2.如果,那么;
3.如果,那么;
4.如果,那么;
5.如果,那么.
学生活动:分组讨论回答.
【教法说明】这一段是学生尝试利用等式性质对等式变形的练习过程,因此可采用小组竞赛、抢答等灵活的课堂训练形式.
师提出问题:上面问题同学们解答的非常好,下面请大家考虑一个问题,每个同学编一道和上面填空题类似的题目,交给同桌同学解答,并请对方谈谈所编题目是否符合标准.
【教法说明】上面问题教师应指导学生编题、解答,最后应用由学生代表性地评比一下,以培养学生灵活性、多角度思考数学问题的方法.
(四)变式训练,培养能力
我们通过学习等式的性质,不难发现可以利用等式的性质解决方程的求解问题(也就是可以求方程未知数的值).
(出示投影6)
利用等式的性质解方程:
(1);(2);
解:等式两边都乘以2解:等式两边都加上7得
得
等式的两边都除以5
得.
【教法说明】上面题目可启发学生思考如何应用等式性质求方程中未知数的值,由学生思考后教师引导作答写出以上过程
(出示投影7)
已知:、都是数,利用等式性质将下列各小题中的等式进行变形,然后填空.
(1)如果,那么
这就是说,如果两个数的和为零,那么这两个数___________.
(2)如果,那么.
这就是说,如果两个数的积为1,那么这两个数__________.
【教法说明】这是利用等式变形来认识相反数、倒数问题,解题时注意“互为”问题的有关概念语言.
(五)归纳小结
师:我们今天学习了等式的概念和等式的性质,通过学习我们应该清楚:
1.能根据等式的性质,把已知等式通过变形得到一个新等式,问题的关键在于怎样从新等式出发考虑用什么性质变形,这要靠大家的观察分析能力.
2.我们今天学习的等式的性质,是将来解方程的依据.
八、随堂练习
1.填空题
(1)将等式的两边都__________得到,这是根据等式性质______.
(2)将等式的两边都乘以____________、或除以___________得到,这是根据等式性质____________;
(3)将等式的两边都____________得到,这是根据等式性质_____________;
(4)将等式的两边都__________得到,这是根据等式性质________.
2.用适当的整式填空,使所得结果仍是等式
(1)如果,那么;
(2)如果,那么;
(3)如果,那么;
(4)如果,那么;
(5)如果,那么.
3.判断下列变形是否正确
(1)由得到.()
(2)由得到.()
(3)由得到.()
(4)由得到.()
(5)由得到.()
(6)由得到.()
九、布置作业
1.课本第186页习题4.1A组,4.(6)(7)(8);
2.课本第187页B组3.
十、板书设计
十一、参考答案
1.(1)加3,1;(2)2,,2;(3)减去,1;(4)除以,2.
2.(1)2;(2)-3;(3);(4);(5),3.
3.√√×××√
作业答案
4.(6);(7);(8);
B组3.①,零;②,是1.
12.1用公式解一元二次方程(一)
一、素质教育目标
(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.
二、教学重点、难点
1.教学重点:一元二次方程的意义及一般形式.
2.教学难点:正确识别一般式中的“项”及“系数”.
三、教学步骤
(一)明确目标
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
(二)整体感知
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.
一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.
5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?
教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.
6.练习1:教材p.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.
练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.
8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.
(四)总结、扩展
引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?
1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.
3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.
四、布置作业
1.教材p.6练习2.
2.思考题:
1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”
2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).
五、板书设计
第十二章一元二次方程
12.1用公式解一元二次方程
1.整式方程:……
4.例1:……
2.一元二次方程……:
……
3.一元二次方程的一般形式:
……
5.练习:……
……
……
六、课后习题参考答案
教材p.6a2.
教材p.6b1、2.
1.(1)二次项系数:ab一次项系数:c常数项:d.
(2)二次项系数:m-n一次项系数:0常数项:m+n.
2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.
思考题
(1)不能.如x3+2x2-4x=5.
(2)一元三次方程:只含有一个未知数,且未知数的最高次数是3,这样的整式方程叫做一元三次方程.一般形式:ax3+bx2+cx+d=0(a≠0).
一元四次方程:只含有一个未知数,且未知数的最高次数是4,这样的整式方程叫做一元四次方程.一般形式:ax4+bx3+cx2+dx+e=0(a≠0).
本文网址://m.jk251.com/jiaoan/6086.html
上一篇:派出所指导员演讲【优秀范本】
下一篇:数量的表示(小编推荐)