导航栏

×
范文大全 > 初中教案

时间:2022-02-25

现在,很多初中教学都需要用到教案,编写教案能够提高自己的教学研究能力,用心编写教案才能促进初中的教学进一步发展,对于初中教案报的撰写你是否毫无头绪呢?欢迎大家阅读小编为大家收集整理的《题》。

(总第一课时)

一、课标要求

1、知识与技能:知道化学是研究物质的组成、结构、性质以及变化规律的自然科学。

2、过程与方法:通过具体的探究活动认识到学习化学的特点是关注物质的性质、变化、变化过程及现象。

4、情感态度与价值观:亲近化学,热爱化学,体验探究活动及学习化学的乐趣。

二、实验准备

1、氢氧化钠溶液、硫酸铜溶液、浓硫酸、高锰酸钾、酚酞、稀盐酸

2、酒精灯、玻璃棒、试管、白纸、小型喷雾器。

三、课堂程序

1、提问激情、引入课题。

2、实验启趣。

⑴白花变红现象:

⑵魔棒点灯现象:

⑶氢氧化钠溶液与硫酸铜溶液反应现象:

3、化学的研究对象

⑴研究自然界已存在的物质及其变化,如食盐(氯化钠)。

调味品——防腐

氢氧化钠,肥皂,造纸,纺织,印染等

制盐酸

氯气漂白粉

食盐(氯化钠)塑料,农药

化工原料有机合成

制盐酸

氢气金属冶炼

化肥

有机合成

⑵创造自然界不存在的新物质,如半导体、超导体、有记忆能力的新材料。

⑶知道物质内部组成、结构及其变化规律的科学。

结论:化学是研究物质的­­­______、_______、_______­­­及其__________的科学。

四、阅读教材,联系你所知道的谈谈人类古代的化学知识。

1、火的发现和利用。(利弊)2、冶金工业。⑴铜的冶炼⑵铁的冶炼

3、陶瓷工业4、酿造业:酒、醋

5、黑火药:硝(硝酸钾)、磺(硫磺)、碳(木炭)6、纸7、染料

五、你想了解近代化学理论是如何建立的吗?阅读教材后列出提纲,并与小组成员交流。

六、看图说话。

七、你想了解这些名词吗?(你通过什么方式获得相关信息?)

超导体、纳米、绿色化学、扫描隧道显微镜。

八、你学完本课题后最深的感受是什么?

jK251.com其他人还在看

作图题举例


(1)知识结构

重点与难点分析

本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。

本节内容的难点是如何构思作图思路,如何分解所要求作的几何图形,探索出作图步骤。比较复杂的作图题,要经过严格地分析,才能找到作图的根据和方法,这对推理能力的要求比较高。对刚刚学习几何作图问题的初二学生来讲,他们会感到困难的,所以把上述作为难点来对待。

教法建议

本节课教学模式的选择与学习方法主要是通过师生互动交流、学生群体互动交流,教给学生学习数学的切实方法。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)本节课开始,由同学们写出五种基本作图并作图,保留痕迹。要求同桌互相检查,从一开始就鼓励双边交流与多边交流。体现以“学生为主体”的教学思想。

(2)出示问题(例1,例2,例3),让学生主动探索解决。

对例1学生可以独立思考或者相互讨论。教师巡视,若发现有一些学生已经通过某种途径获得问题的解答,则可以让学生表述自己的解法,否则可以启发。教师注意强调作图题的有关事项。

对例2、例3仍是学生思考与交流。需要的话,教师应当提供必要的帮助:大家是否有点困难?有没有思路?你是否知道自己要达到的目的,或者说你想得到什么(必要的话,可以提示学生回顾一下例1作法过程)然后,让学生试着写出作法,利用投影展示学生的作品,师生共同纠正完善。

这一过程给学生提供了自主活动的机会,通过尝试几个实例,进而获得作图题的一般解题思路和方法。讲清尺规作图题的如何分析作法的来源。

教学目标:

1、知识目标:

(1)能够利用基本作图作出符合要求作的几何图形;

(2)熟练作图的规范语言;

2、能力目标:

(1)通过作图题,培养学生的作图能力、语言表达能力、逻辑思维与推理能力;

(2)通过作图问题的解决,提高作图的技能和技巧.

3、情感目标:

通过作图练习,培养学生良好的书写习惯.

教学重点:根据基本作图作出符合要求的几何图形.

教学难点:如何构思作图思路,如何分解所要求作的几何图形,探索出作图步骤.

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、复习引入

(1)五种基本作图是什么?(学生回答后,投影显示)

(2)学生在练习本上画出五种基本作图(不写作法,保留痕迹)

教师巡视,并指导个别学生.

2、新课

(1)讲解例1:教师注重作法的思路分析,并板书作法.

例1已知两边及其夹角,求作三角形.

已知:,线段,如图,

求作:,使A=,AB=,AC=

作法:1、作MAN=

2、在射线AM、AN上分别作线段AB=,AC=

3、连结BC

为所求作的三角形

强调说明:

①一般几何作图题的步骤:已知、求作、作法、证明.在一般情况下,只要求掌握已知、求作、作法三个步骤.

②几何作图题的作法的书写规定:在几何作图题中,要反复用到上节学过的基本作图,但不需重复基本作图过程,只要写出是哪个基本作图就可以了.例如“作MAN=”

③作图语言要规范.

(2)讲解例2

①(投影)例2已知底边,底边上的高,求作等腰三角形.

已知:线段、

求作:,使AB=AC,且BC=,高AD=

②学生思考,教师点拨.

③找学生代表口述作法,教师板书.

作法:1、作线段BC=

2、作线段BC的垂直平分线MN,MN与BC交于点D

3、在MN上截取DA,使DA=

4、连结AB、AC

为所求的等腰三角形

(3)讲解例3

①(投影)例3求作等腰直角三角形,使它的斜边等于已知线段

已知:线段

求作:,使∠A=,AB=AC,BC=

②学生思考、分析、讨论,教师巡视,适当参与讨论

③找学生代表口述作法思路

思路1:作两直角的平分线

思路2:先作一个角为,然后再作另一个角与其相等

思路3:先作一个角为,再作直角.

思路4:利用等腰直角三角形的性质,斜边上的高等于斜边的一半.

师生共同讨论,说明各种思路的优势.

3、课堂小结:

一些简单作图都是由基本作图组成的,由此,在几何作图时,先应画出草图分析,将简单的尺规作图分解为若干个基本作图.

4、布置作业:

a、书面作业P88#7

b、上交作业P88#11、12

c、思考题:如图

板书设计:

题教案模板


课时教案

课题:课题2燃料和热量

一、教学目标(知识目标、能力目标、情意目标)

⒈知识与技能:⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要作用;同时,知道石油炼制出的几种主要产品及其用途。

⑵了解化学反应中的能量变化,认识燃料充分燃烧的重要性。

⒉过程与方法:通过一些探究活动,进一步认识与体验科学探究的过程。

⒊情感态度与价值观:了解化石燃料的不可再生性,认识合理开采和节约使用化石燃料的重要性。

二、教学重点⒈煤、石油、天然气三大化石燃料

⒉化学变化中能量的变化

难点⒈燃料充分燃烧的条件和意义

⒉化学变化中能量的变化

三、教学模式(或方法):探究活动与教师讲述结合

四、教学过程

复习课题1燃烧的条件⑴可燃物

⑵氧气(或空气)

⑶温度要达到着火点

教师强调可燃物有许多是燃料,引导学生阅读课本上第一小节,引出三大化石燃料——煤、石油和天然气。

一、煤、石油和天然气

煤:是非常复杂的混合物,主要由碳元素组成,还含有氮、硫等元素,讨论回答课本上有关煤的知识中的探究问题。

教师小结。

石油:是非常复杂的混合物,主要由碳、氢元素组成,通过一些方法可以炼制得到许多产品,如汽油、煤油、柴油、石蜡等;讨论回答课本上有关石油的知识中的探究问题。

教师小结。

天然气:主要成分是甲烷,化学式为ch4,

做甲烷燃烧的探究实验,提醒学生一定要检验气体的纯度,让学生观察现象,并根据现象判断出甲烷燃烧的产物是水和二氧化碳,并根据该实验推断出甲烷中含有碳元素和氢元素。

介绍“可燃冰”

二、燃烧中能量的变化

做探究实验——镁带和稀盐酸的反应。

现象:有气泡生成,试管壁发烫。

结论:镁带和稀盐酸的反应时要放出热量。

有的化学反应放热,如物质的燃烧、金属和酸的反应

有的则吸热,如碳和二氧化碳的反应、木炭还原氧化铜等。

要使燃料充分燃烧的条件:

一是要有充足的氧气

二是要和空气有足够大的接触面积。

教师小结:⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要作用;同时,知道石油炼制出的几种主要产品及其用途。

⑵了解化学反应中的能量变化,认识燃料充分燃烧的重要性。

应用题


一、倍分关系

1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。

3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

二、百分比问题:

1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。

2、某商品降价12%后的售价为176元,求该商品的原价。

3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。

三、物资分配:

1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。

2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?

四、比例问题:

1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?

2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?

五、调配问题:

1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。

2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。

六、数字问题:

1、三个连续偶数的和是360,求这三个偶数。

2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。

3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。

七、几何问题:

1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。

2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?

应用题教案模板


应用题训练(二)

一、倍分关系

1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。

3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

二、百分比问题:

1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。

2、某商品降价12%后的售价为176元,求该商品的原价。

3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。

三、物资分配:

1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。

2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?

四、比例问题:

1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?

2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?

五、调配问题:

1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。

2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。

六、数字问题:

1、三个连续偶数的和是360,求这三个偶数。

2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。

3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。

七、几何问题:

1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。

2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?

应用题训练(二)

一、倍分关系

1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

2、已知甲数是乙数的少5,甲数比乙数大65,求乙数。

3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

二、百分比问题:

1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。

2、某商品降价12%后的售价为176元,求该商品的原价。

3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。

三、物资分配:

1、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。

2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问,春游的总人数是多少?

四、比例问题:

1、某一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?

2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

3、某人将2600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1:3:5:4,请问此人打算休闲娱乐花去多少元?

五、调配问题:

1、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。

2、某厂甲车间有工人32人,乙车间有62人,现在从厂外有招聘新工人98名分配到两个车间,问应该如何分配才能使二车间的人数是一车间人数的3倍。

六、数字问题:

1、三个连续偶数的和是360,求这三个偶数。

2、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数。

3、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。

七、几何问题:

1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。

2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?

经典初中教案作图题举例


(1)知识结构

重点与难点分析

本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。

本节内容的难点是如何构思作图思路,如何分解所要求作的几何图形,探索出作图步骤。比较复杂的作图题,要经过严格地分析,才能找到作图的根据和方法,这对推理能力的要求比较高。对刚刚学习几何作图问题的初二学生来讲,他们会感到困难的,所以把上述作为难点来对待。

教法建议

本节课教学模式的选择与学习方法主要是通过师生互动交流、学生群体互动交流,教给学生学习数学的切实方法。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)本节课开始,由同学们写出五种基本作图并作图,保留痕迹。要求同桌互相检查,从一开始就鼓励双边交流与多边交流。体现以“学生为主体”的教学思想。

(2)出示问题(例1,例2,例3),让学生主动探索解决。

对例1学生可以独立思考或者相互讨论。教师巡视,若发现有一些学生已经通过某种途径获得问题的解答,则可以让学生表述自己的解法,否则可以启发。教师注意强调作图题的有关事项。

对例2、例3仍是学生思考与交流。需要的话,教师应当提供必要的帮助:大家是否有点困难?有没有思路?你是否知道自己要达到的目的,或者说你想得到什么(必要的话,可以提示学生回顾一下例1作法过程)然后,让学生试着写出作法,利用投影展示学生的作品,师生共同纠正完善。

这一过程给学生提供了自主活动的机会,通过尝试几个实例,进而获得作图题的一般解题思路和方法。讲清尺规作图题的如何分析作法的来源。

教学目标:

1、知识目标:

(1)能够利用基本作图作出符合要求作的几何图形;

(2)熟练作图的规范语言;

2、能力目标:

(1)通过作图题,培养学生的作图能力、语言表达能力、逻辑思维与推理能力;

(2)通过作图问题的解决,提高作图的技能和技巧.

3、情感目标:

通过作图练习,培养学生良好的书写习惯.

教学重点:根据基本作图作出符合要求的几何图形.

教学难点:如何构思作图思路,如何分解所要求作的几何图形,探索出作图步骤.

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、复习引入

(1)五种基本作图是什么?(学生回答后,投影显示)

(2)学生在练习本上画出五种基本作图(不写作法,保留痕迹)

教师巡视,并指导个别学生.

2、新课

(1)讲解例1:教师注重作法的思路分析,并板书作法.

例1已知两边及其夹角,求作三角形.

已知:,线段,如图,

求作:,使A=,AB=,AC=

作法:1、作MAN=

2、在射线AM、AN上分别作线段AB=,AC=

3、连结BC

为所求作的三角形

强调说明:

①一般几何作图题的步骤:已知、求作、作法、证明.在一般情况下,只要求掌握已知、求作、作法三个步骤.

②几何作图题的作法的书写规定:在几何作图题中,要反复用到上节学过的基本作图,但不需重复基本作图过程,只要写出是哪个基本作图就可以了.例如“作MAN=”

③作图语言要规范.

(2)讲解例2

①(投影)例2已知底边,底边上的高,求作等腰三角形.

已知:线段、

求作:,使AB=AC,且BC=,高AD=

②学生思考,教师点拨.

③找学生代表口述作法,教师板书.

作法:1、作线段BC=

2、作线段BC的垂直平分线MN,MN与BC交于点D

3、在MN上截取DA,使DA=

4、连结AB、AC

为所求的等腰三角形

(3)讲解例3

①(投影)例3求作等腰直角三角形,使它的斜边等于已知线段

已知:线段

求作:,使∠A=,AB=AC,BC=

②学生思考、分析、讨论,教师巡视,适当参与讨论

③找学生代表口述作法思路

思路1:作两直角的平分线

思路2:先作一个角为,然后再作另一个角与其相等

思路3:先作一个角为,再作直角.

思路4:利用等腰直角三角形的性质,斜边上的高等于斜边的一半.

师生共同讨论,说明各种思路的优势.

3、课堂小结:

一些简单作图都是由基本作图组成的,由此,在几何作图时,先应画出草图分析,将简单的尺规作图分解为若干个基本作图.

4、布置作业:

a、书面作业P88#7

b、上交作业P88#11、12

c、思考题:如图

板书设计:

题初中教案精选


课题1质量守恒定律

(总第二十九课时)

一课标要求

1知识与技能:了解化学方程式的意义,并能正确书写简单化学方程式。

2过程与方法:对化学方程式教学,教师通过互动性教学组织形式,引导学生逐步深入思考化学方程式的意义,讨论总结化学方程式的读法。

3情感、态度与价值观:通过理解化学方程式的意义,培养科学态度。

二课堂程序

1、知识回放与引入:⑴质量守恒定律的内容及遵守质量守恒的原因。、

⑵用文字描述碳在氧气中燃烧的文字表达式。

⑶我们知道用化学式来表示物质的组成不仅书写方便,而且从化学式还可以知道物质的内部构成。那么物质之间发生的化学反应是否也可以用一种式子来表示呢?

2、引入化学方程式:

⑴定义:

⑵化学方程式的读法点燃

以c+o2====co2为例

宏观:

微观:

质量:

⑶化学方程式意义(与读法一致)

3、化学方程式提供的信息

⑴讨论:从物质种类、质量和反应条件等方面考虑,下列反应的化学方程式能提供给你哪些信息?

加热cuo+h2==cu+h2o

加热mg+cuo====mg+cu

反应物

生成物

反应条件

反应物、生成物粒子比

生成物、反应物质量比

质量守恒

⑵归纳:化学方程式提供的信息

三课堂练习

1、蜡烛燃烧后的产物有二氧化碳和水,根据质量守恒定律可知,该物质的组成中一定含有元素。

2、根据质量守恒定律,在a2+3b====2c中,c的化学式用a、b表示是()

a、ab2b、ab3c、a2b3d、a3b2

四课外练习:点拨p137

五反思与体会:通过这节课学习,我的收获和体会

题的教学方案


第一单元走进化学世界

课题2、化学是一门以实验为基础的科学

(第二课时)

教学目标

知识与技能:1、知道学习化学的一个重要途径是实验,初步学会对实验现象进行观察和描述的方法

2、初步学会人体吸入、呼出空气的有关实验操作

3、通过对实验现象的观察和分析得出有价值的结论。

过程与方法:通过观察和实验探究人体吸入的空气和呼出的气体的不同。

情感与价值观:通过探究活动培养学生学习的兴趣,通过合作和交流,培养学生主动与他人合作精神。

重点、难点:

重点:1、对人体吸入的空气和呼出的气体的不同进行探究

2、明确表述探究所得的结论

难点:培养学生对现象的观察记录和描述能力

教学过程设计:

教师活动

学生活动

设计意图

课前准备:

排水集气法的练习

导入新课

什么是呼吸作用

在家自找器皿练习

回答

使学生顺利完成探究活动

引入实验探究

新授课:

1、提问:呼出的气体与吸入气体有何不同

2、小结:①二氧化碳

②氧气

③水

三种物质含量的区别

3、小结归纳实验方法

二氧化碳---澄清石灰水

氧气---带火星的木条

水---玻璃片

4、提问、现象结论

教师活动

猜想、讨论

设计实验

讨论步骤、方法

分组实验:

1、收集两瓶呼出的气体

2、用澄清石灰水区别二氧化碳含量的多少

3、用带火星的木条区别氧气含量的多少

4、玻璃片区别水分含量的多少

根据现象归纳结论

学生活动

激发兴趣

互相交流,体现探究性学习

探究性教学

重点知识

实验探究

加深理解

观察记录

加深重点知识的掌握

布置作业

整理探究活动记录

完成实验报告册实验二

板书设计

课题2、化学是一门以实验为基础的科学

二、对人体吸入的空气和呼出气体的探究

二氧化碳吸入气

氧气吸入气>氧气呼出气

水蒸气吸入气

数学教案-作图题举例教案模板


(1)知识结构

重点与难点分析

本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。

本节内容的难点是如何构思作图思路,如何分解所要求作的几何图形,探索出作图步骤。比较复杂的作图题,要经过严竦胤治觯拍苷业阶魍嫉母莺头椒ǎ舛酝评砟芰Φ囊蟊冉细摺6愿崭?lt;STRONG>学习几何作图问题的初二学生来讲,他们会感到困难的,所以把上述作为难点来对待。

教法建议

本节课教学模式的选择与学习方法主要是通过师生互动交流、学生群体互动交流,教给学生学习数学的切实方法。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)本节课开始,由同学们写出五种基本作图并作图,保留痕迹。要求同桌互相检查,从一开始就鼓励双边交流与多边交流。体现以“学生为主体”的教学思想。

(2)出示问题(例1,例2,例3),让学生主动探索解决。

对例1学生可以独立思考或者相互讨论。教师巡视,若发现有一些学生已经通过某种途径获得问题的解答,则可以让学生表述自己的解法,否则可以启发。教师注意强调作图题的有关事项。

对例2、例3仍是学生思考与交流。需要的话,教师应当提供必要的帮助:大家是否有点困难?有没有思路?你是否知道自己要达到的目的,或者说你想得到什么(必要的话,可以提示学生回顾一下例1作法过程)然后,让学生试着写出作法,利用投影展示学生的作品,师生共同纠正完善。

这一过程给学生提供了自主活动的机会,通过尝试几个实例,进而获得作图题的一般解题思路和方法。讲清尺规作图题的如何分析作法的来源。

教学目标:

1、知识目标:

(1)能够利用基本作图作出符合要求作的几何图形;

(2)熟练作图的规范语言;

2、能力目标:

(1)通过作图题,培养学生的作图能力、语言表达能力、逻辑思维与推理能力;

(2)通过作图问题的解决,提高作图的技能和技巧.

3、情感目标:

通过作图练习,培养学生良好的书写习惯.

教学重点:根据基本作图作出符合要求的几何图形.

教学难点:如何构思作图思路,如何分解所要求作的几何图形,探索出作图步骤.

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、复习引入

(1)五种基本作图是什么?(学生回答后,投影显示)

(2)学生在练习本上画出五种基本作图(不写作法,保留痕迹)

教师巡视,并指导个别学生.

2、新课

(1)讲解例1:教师注重作法的思路分析,并板书作法.

例1已知两边及其夹角,求作三角形.

已知:,线段,如图,

求作:,使A=,AB=,AC=

作法:1、作MAN=

2、在射线AM、AN上分别作线段AB=,AC=

3、连结BC

为所求作的三角形

强调说明:

①一般几何作图题的步骤:已知、求作、作法、证明.在一般情况下,只要求掌握已知、求作、作法三个步骤.

②几何作图题的作法的书写规定:在几何作图题中,要反复用到上节学过的基本作图,但不需重复基本作图过程,只要写出是哪个基本作图就可以了.例如“作MAN=”

③作图语言要规范.

(2)讲解例2

①(投影)例2已知底边,底边上的高,求作等腰三角形.

已知:线段、

求作:,使AB=AC,且BC=,高AD=

②学生思考,教师点拨.

③找学生代表口述作法,教师板书.

作法:1、作线段BC=

2、作线段BC的垂直平分线MN,MN与BC交于点D

3、在MN上截取DA,使DA=

4、连结AB、AC

为所求的等腰三角形

(3)讲解例3

①(投影)例3求作等腰直角三角形,使它的斜边等于已知线段

已知:线段

求作:,使∠A=,AB=AC,BC=

②学生思考、分析、讨论,教师巡视,适当参与讨论

③找学生代表口述作法思路

思路1:作两直角的平分线

思路2:先作一个角为,然后再作另一个角与其相等

思路3:先作一个角为,再作直角.

思路4:利用等腰直角三角形的性质,斜边上的高等于斜边的一半.

师生共同讨论,说明各种思路的优势.

3、课堂小结:

一些简单作图都是由基本作图组成的,由此,在几何作图时,先应画出草图分析,将简单的尺规作图分解为若干个基本作图.

4、布置作业:

a、书面作业P88#7

b、上交作业P88#11、12

c、思考题:如图

板书设计:

本文网址:http://m.jk251.com/jiaoan/12986.html

相关文章
最新更新

热门标签