1、填空:
(1)把一个平行四边形转化成一个(),它的面积和原来的平行四边形(),平行四边形的底是长方形的(),长方形的宽和平行四边形的()相等。
(2)平行四边形面积的计算公式是(),用含有字母的式子表示是()。
2、在括号里填上适当的数。
3.4平方米=()平方分米708平方厘米=()平方米
0.12平方分米=()平方厘米(4)430平方厘米=()平方分米()平方厘米
3、算出下面每个平行四边形的面积.
(1)
6厘米
3厘米
(2)
6米
4米
(3)一种平行四边形的铁片零件,底长15.4厘米.高比底短了4.5厘米,生产一个这样的零件需要多少平方厘米的铁片?
4.扩展练习:
如图,大平行四边形的底是20厘米,高是14厘米,小平行四边形(阴影部分)的顶点分别是大平行四边形各边的中点,小平行四边形的面积是多少平方厘米?
5.练习:
(1)、图中有几个平行四边形?
(2)、有一个平行四边形,底是2.4米,高比底少0.4米,面积是()平方米.
(3)、平行四边形与长方形面积比较,谁大?
(4)、两个面积相等的平行四边形,已知第一个平行四边形的底是6厘米,高是4.5厘米,第二个平行四边形的底是9厘米,它的高是()厘米.
(5)、正确选择条件计算下面平行四边形的面积.(单位:厘米)
1.5
1.8
本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。
第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。
第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。
本文网址://m.jk251.com/jiaoan/17311.html
上一篇:小数乘法除法 教案精选篇
下一篇:信息获取的一般过程【推荐】